MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgre Structured version   Unicode version

Theorem itgre 21935
Description: Real part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcnval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
itgre  |-  ( ph  ->  ( Re `  S. A B  _d x
)  =  S. A
( Re `  B
)  _d x )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgre
StepHypRef Expression
1 itgcnval.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 itgcnval.2 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
31, 2itgcnval 21934 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
43fveq2d 5861 . 2  |-  ( ph  ->  ( Re `  S. A B  _d x
)  =  ( Re
`  ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
5 iblmbf 21902 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
62, 5syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
76, 1mbfmptcl 21772 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
87recld 12977 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
97iblcn 21933 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
102, 9mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
1110simpld 459 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
128, 11itgrecl 21932 . . 3  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  RR )
137imcld 12978 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
1410simprd 463 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
1513, 14itgrecl 21932 . . 3  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  RR )
1612, 15crred 13014 . 2  |-  ( ph  ->  ( Re `  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  S. A ( Re
`  B )  _d x )
174, 16eqtrd 2501 1  |-  ( ph  ->  ( Re `  S. A B  _d x
)  =  S. A
( Re `  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   _ici 9483    + caddc 9484    x. cmul 9486   Recre 12880   Imcim 12881  MblFncmbf 21751   L^1cibl 21754   S.citg 21755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xadd 11308  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-xmet 18176  df-met 18177  df-ovol 21604  df-vol 21605  df-mbf 21756  df-itg1 21757  df-itg2 21758  df-ibl 21759  df-itg 21760  df-0p 21805
This theorem is referenced by:  itgabs  21969  itgabsnc  29648
  Copyright terms: Public domain W3C validator