MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgposval Structured version   Unicode version

Theorem itgposval 22384
Description: The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblrelem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgreval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgposval.3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
itgposval  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem itgposval
StepHypRef Expression
1 iblrelem.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgreval.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
31, 2itgrevallem1 22383 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) ) )
4 itgposval.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
54ex 432 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  ->  0  <_  B )
)
65pm4.71rd 633 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  <->  ( 0  <_  B  /\  x  e.  A )
) )
7 ancom 448 . . . . . . 7  |-  ( ( 0  <_  B  /\  x  e.  A )  <->  ( x  e.  A  /\  0  <_  B ) )
86, 7syl6rbb 262 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  0  <_  B )  <->  x  e.  A ) )
98ifbid 3904 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  B , 
0 ) )
109mpteq2dv 4479 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
1110fveq2d 5807 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
121, 4iblposlem 22380 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  =  0 )
1311, 12oveq12d 6250 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  -  0 ) )
141, 4iblpos 22381 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
152, 14mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
1615simprd 461 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
1716recnd 9570 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  CC )
1817subid1d 9874 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  -  0 )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
193, 13, 183eqtrd 2445 1  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1403    e. wcel 1840   ifcif 3882   class class class wbr 4392    |-> cmpt 4450   ` cfv 5523  (class class class)co 6232   RRcr 9439   0cc0 9440    <_ cle 9577    - cmin 9759   -ucneg 9760  MblFncmbf 22205   S.2citg2 22207   L^1cibl 22208   S.citg 22209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-inf2 8009  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518  ax-addf 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-fal 1409  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-disj 4364  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-isom 5532  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-ofr 6476  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-1o 7085  df-2o 7086  df-oadd 7089  df-er 7266  df-map 7377  df-pm 7378  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-sup 7853  df-oi 7887  df-card 8270  df-cda 8498  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-4 10555  df-n0 10755  df-z 10824  df-uz 11044  df-q 11144  df-rp 11182  df-xadd 11288  df-ioo 11502  df-ico 11504  df-icc 11505  df-fz 11642  df-fzo 11766  df-fl 11877  df-mod 11946  df-seq 12060  df-exp 12119  df-hash 12358  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123  df-clim 13365  df-sum 13563  df-xmet 18622  df-met 18623  df-ovol 22058  df-vol 22059  df-mbf 22210  df-itg1 22211  df-itg2 22212  df-ibl 22213  df-itg 22214  df-0p 22259
This theorem is referenced by:  itgreval  22385  itgitg2  22395  itgaddlem1  22411  itgmulc2lem1  22420  itggt0  22430  itgcn  22431  itgaddnclem1  31410  itgmulc2nclem1  31418  itggt0cn  31424  ftc2nc  31436
  Copyright terms: Public domain W3C validator