MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Structured version   Unicode version

Theorem itgparts 21360
Description: Integration by parts. If  B (
x ) is the derivative of  A ( x ) and  D ( x ) is the derivative of  C ( x ), and  E  =  ( A  x.  B ) ( X ) and  F  =  ( A  x.  B ) ( Y ), then under suitable integrability and differentiability assumptions, the integral of  A  x.  D from  X to  Y is equal to  F  -  E minus the integral of  B  x.  C. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x  |-  ( ph  ->  X  e.  RR )
itgparts.y  |-  ( ph  ->  Y  e.  RR )
itgparts.le  |-  ( ph  ->  X  <_  Y )
itgparts.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.c  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.d  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.ad  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L^1 )
itgparts.bc  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L^1 )
itgparts.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgparts.dc  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
itgparts.e  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
itgparts.f  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
Assertion
Ref Expression
itgparts  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Distinct variable groups:    ph, x    x, X    x, Y    x, E    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem itgparts
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
2 cncff 20310 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
4 eqid 2433 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
54fmpt 5852 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
63, 5sylibr 212 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
76r19.21bi 2804 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
8 ioossicc 11368 . . . . . . 7  |-  ( X (,) Y )  C_  ( X [,] Y )
98sseli 3340 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
10 itgparts.c . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
11 cncff 20310 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  C )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  C ) : ( X [,] Y ) --> CC )
1210, 11syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C ) : ( X [,] Y ) --> CC )
13 eqid 2433 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  C )  =  ( x  e.  ( X [,] Y
)  |->  C )
1413fmpt 5852 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) C  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  C ) : ( X [,] Y
) --> CC )
1512, 14sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) C  e.  CC )
1615r19.21bi 2804 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  C  e.  CC )
179, 16sylan2 471 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  CC )
187, 17mulcld 9393 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( B  x.  C )  e.  CC )
19 itgparts.bc . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L^1 )
2018, 19itgcl 21102 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( B  x.  C )  _d x  e.  CC )
21 itgparts.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
22 cncff 20310 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> CC )
2321, 22syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> CC )
24 eqid 2433 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
2524fmpt 5852 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) A  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> CC )
2623, 25sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  CC )
2726r19.21bi 2804 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
289, 27sylan2 471 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  CC )
29 itgparts.d . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
30 cncff 20310 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  D )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  D ) : ( X (,) Y ) --> CC )
3129, 30syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D ) : ( X (,) Y ) --> CC )
32 eqid 2433 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  D )  =  ( x  e.  ( X (,) Y
)  |->  D )
3332fmpt 5852 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) D  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  D ) : ( X (,) Y
) --> CC )
3431, 33sylibr 212 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) D  e.  CC )
3534r19.21bi 2804 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  CC )
3628, 35mulcld 9393 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( A  x.  D )  e.  CC )
37 itgparts.ad . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L^1 )
3836, 37itgcl 21102 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  e.  CC )
3920, 38pncan2d 9708 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  S. ( X (,) Y ) ( A  x.  D )  _d x )
4018, 19, 36, 37itgadd 21143 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( S. ( X (,) Y
) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D )  _d x ) )
41 fveq2 5679 . . . . . . 7  |-  ( x  =  t  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t ) )
42 nfcv 2569 . . . . . . 7  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)
43 nfcv 2569 . . . . . . . . 9  |-  F/_ x RR
44 nfcv 2569 . . . . . . . . 9  |-  F/_ x  _D
45 nfmpt1 4369 . . . . . . . . 9  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )
4643, 44, 45nfov 6103 . . . . . . . 8  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )
47 nfcv 2569 . . . . . . . 8  |-  F/_ x
t
4846, 47nffv 5686 . . . . . . 7  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t
)
4941, 42, 48cbvitg 21094 . . . . . 6  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  _d x  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t
50 itgparts.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
51 itgparts.y . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
52 itgparts.le . . . . . . 7  |-  ( ph  ->  X  <_  Y )
53 ax-resscn 9326 . . . . . . . . . . 11  |-  RR  C_  CC
5453a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
55 iccssre 11364 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
5650, 51, 55syl2anc 654 . . . . . . . . . 10  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
5727, 16mulcld 9393 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  x.  C )  e.  CC )
58 eqid 2433 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5958tgioo2 20221 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
60 iccntr 20239 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6150, 51, 60syl2anc 654 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6254, 56, 57, 59, 58, 61dvmptntr 21286 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) ) )
63 reelprrecn 9361 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6463a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
6554, 56, 27, 59, 58, 61dvmptntr 21286 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
66 itgparts.da . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6765, 66eqtr3d 2467 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6854, 56, 16, 59, 58, 61dvmptntr 21286 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  C ) ) )
69 itgparts.dc . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7068, 69eqtr3d 2467 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7164, 28, 7, 67, 17, 35, 70dvmptmul 21276 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( D  x.  A ) ) ) )
7235, 28mulcomd 9394 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( D  x.  A )  =  ( A  x.  D ) )
7372oveq2d 6096 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( B  x.  C )  +  ( D  x.  A ) )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
7473mpteq2dva 4366 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( D  x.  A ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7562, 71, 743eqtrd 2469 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7658addcn 20282 . . . . . . . . . 10  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7776a1i 11 . . . . . . . . 9  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
7858mulcn 20284 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7978a1i 11 . . . . . . . . . 10  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
80 resmpt 5144 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  C ) )
818, 80ax-mp 5 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  C )
82 rescncf 20314 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
838, 10, 82mpsyl 63 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
8481, 83syl5eqelr 2518 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  ( ( X (,) Y
) -cn-> CC ) )
8558, 79, 1, 84cncfmpt2f 20331 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
86 resmpt 5144 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  A ) )
878, 86ax-mp 5 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  A )
88 rescncf 20314 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
898, 21, 88mpsyl 63 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
9087, 89syl5eqelr 2518 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  A )  e.  ( ( X (,) Y
) -cn-> CC ) )
9158, 79, 90, 29cncfmpt2f 20331 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9258, 77, 85, 91cncfmpt2f 20331 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9375, 92eqeltrd 2507 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9418, 19, 36, 37ibladd 21139 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  L^1 )
9575, 94eqeltrd 2507 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  L^1 )
9658, 79, 21, 10cncfmpt2f 20331 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )  e.  ( ( X [,] Y
) -cn-> CC ) )
9750, 51, 52, 93, 95, 96ftc2 21357 . . . . . 6  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
9849, 97syl5eq 2477 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
9975fveq1d 5681 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x ) )
10099adantr 462 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x ) )
101 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  x  e.  ( X (,) Y ) )
102 ovex 6105 . . . . . . . 8  |-  ( ( B  x.  C )  +  ( A  x.  D ) )  e. 
_V
103 eqid 2433 . . . . . . . . 9  |-  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  =  ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) )
104103fvmpt2 5769 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  /\  ( ( B  x.  C )  +  ( A  x.  D ) )  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x )  =  ( ( B  x.  C
)  +  ( A  x.  D ) ) )
105101, 102, 104sylancl 655 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( (
x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x )  =  ( ( B  x.  C )  +  ( A  x.  D
) ) )
106100, 105eqtrd 2465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
107106itgeq2dv 21100 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  S. ( X (,) Y
) ( ( B  x.  C )  +  ( A  x.  D
) )  _d x )
10850rexrd 9420 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
10951rexrd 9420 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
110 ubicc2 11388 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
111108, 109, 52, 110syl3anc 1211 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
112 ovex 6105 . . . . . . . . 9  |-  ( A  x.  C )  e. 
_V
113112csbex 4413 . . . . . . . 8  |-  [_ Y  /  x ]_ ( A  x.  C )  e. 
_V
114 eqid 2433 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) )  =  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) )
115114fvmpts 5764 . . . . . . . 8  |-  ( ( Y  e.  ( X [,] Y )  /\  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
116111, 113, 115sylancl 655 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
117 itgparts.f . . . . . . . 8  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
11851, 117csbied 3302 . . . . . . 7  |-  ( ph  ->  [_ Y  /  x ]_ ( A  x.  C
)  =  F )
119116, 118eqtrd 2465 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  F )
120 lbicc2 11387 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
121108, 109, 52, 120syl3anc 1211 . . . . . . . 8  |-  ( ph  ->  X  e.  ( X [,] Y ) )
122112csbex 4413 . . . . . . . 8  |-  [_ X  /  x ]_ ( A  x.  C )  e. 
_V
123114fvmpts 5764 . . . . . . . 8  |-  ( ( X  e.  ( X [,] Y )  /\  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
124121, 122, 123sylancl 655 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
125 itgparts.e . . . . . . . 8  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
12650, 125csbied 3302 . . . . . . 7  |-  ( ph  ->  [_ X  /  x ]_ ( A  x.  C
)  =  E )
127124, 126eqtrd 2465 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  E )
128119, 127oveq12d 6098 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X ) )  =  ( F  -  E
) )
12998, 107, 1283eqtr3d 2473 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( F  -  E ) )
13040, 129eqtr3d 2467 . . 3  |-  ( ph  ->  ( S. ( X (,) Y ) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D
)  _d x )  =  ( F  -  E ) )
131130oveq1d 6095 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  ( ( F  -  E )  -  S. ( X (,) Y
) ( B  x.  C )  _d x ) )
13239, 131eqtr3d 2467 1  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962   [_csb 3276    C_ wss 3316   {cpr 3867   class class class wbr 4280    e. cmpt 4338   ran crn 4828    |` cres 4829   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267   RRcr 9268    + caddc 9272    x. cmul 9274   RR*cxr 9404    <_ cle 9406    - cmin 9582   (,)cioo 11287   [,]cicc 11290   TopOpenctopn 14342   topGenctg 14358  ℂfldccnfld 17661   intcnt 18462    Cn ccn 18669    tX ctx 18974   -cn->ccncf 20293   L^1cibl 20938   S.citg 20939    _D cdv 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cc 8592  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-ofr 6310  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-ioc 11292  df-ico 11293  df-icc 11294  df-fz 11424  df-fzo 11532  df-fl 11625  df-mod 11692  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-rlim 12950  df-sum 13147  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-fbas 17657  df-fg 17658  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cld 18464  df-ntr 18465  df-cls 18466  df-nei 18543  df-lp 18581  df-perf 18582  df-cn 18672  df-cnp 18673  df-haus 18760  df-cmp 18831  df-tx 18976  df-hmeo 19169  df-fil 19260  df-fm 19352  df-flim 19353  df-flf 19354  df-xms 19736  df-ms 19737  df-tms 19738  df-cncf 20295  df-ovol 20789  df-vol 20790  df-mbf 20940  df-itg1 20941  df-itg2 20942  df-ibl 20943  df-itg 20944  df-0p 20989  df-limc 21182  df-dv 21183
This theorem is referenced by:  itgsinexplem1  29637
  Copyright terms: Public domain W3C validator