MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem2 Structured version   Unicode version

Theorem itgmulc2lem2 22531
Description: Lemma for itgmulc2 22532: real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgmulc2.4  |-  ( ph  ->  C  e.  RR )
itgmulc2.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
itgmulc2lem2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2lem2
StepHypRef Expression
1 itgmulc2.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
21adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
3 max0sub 11448 . . . . . 6  |-  ( C  e.  RR  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
42, 3syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
54oveq1d 6293 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  B
)  =  ( C  x.  B ) )
6 0re 9626 . . . . . . . 8  |-  0  e.  RR
7 ifcl 3927 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
81, 6, 7sylancl 660 . . . . . . 7  |-  ( ph  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
98recnd 9652 . . . . . 6  |-  ( ph  ->  if ( 0  <_  C ,  C , 
0 )  e.  CC )
109adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
111renegcld 10027 . . . . . . . 8  |-  ( ph  -> 
-u C  e.  RR )
12 ifcl 3927 . . . . . . . 8  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
1311, 6, 12sylancl 660 . . . . . . 7  |-  ( ph  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
1413recnd 9652 . . . . . 6  |-  ( ph  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
1514adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
16 itgmulc2.5 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
1716recnd 9652 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
1810, 15, 17subdird 10054 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  B
)  =  ( ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) ) )
195, 18eqtr3d 2445 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  B )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) ) )
2019itgeq2dv 22480 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  S. A
( ( if ( 0  <_  C ,  C ,  0 )  x.  B )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  _d x )
218adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
2221, 16remulcld 9654 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  B )  e.  RR )
23 itgmulc2.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
24 itgmulc2.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
259, 23, 24iblmulc2 22529 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  B ) )  e.  L^1 )
2613adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2726, 16remulcld 9654 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  e.  RR )
2814, 23, 24iblmulc2 22529 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  e.  L^1 )
2922, 25, 27, 28itgsub 22524 . 2  |-  ( ph  ->  S. A ( ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )  _d x  =  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x ) )
30 ifcl 3927 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
3116, 6, 30sylancl 660 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
3221, 31remulcld 9654 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  e.  RR )
3316iblre 22492 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
3424, 33mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) )
3534simpld 457 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L^1 )
369, 31, 35iblmulc2 22529 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) ) )  e.  L^1 )
3716renegcld 10027 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
38 ifcl 3927 . . . . . . . 8  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
3937, 6, 38sylancl 660 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
4021, 39remulcld 9654 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  RR )
4134simprd 461 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )
429, 39, 41iblmulc2 22529 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  e.  L^1 )
4332, 36, 40, 42itgsub 22524 . . . . 5  |-  ( ph  ->  S. A ( ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x  =  ( S. A
( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
44 max0sub 11448 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4516, 44syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4645oveq2d 6294 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( if ( 0  <_  C ,  C , 
0 )  x.  B
) )
4731recnd 9652 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  CC )
4839recnd 9652 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  CC )
4910, 47, 48subdid 10053 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
5046, 49eqtr3d 2445 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  B )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
5150itgeq2dv 22480 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  B )  _d x  =  S. A
( ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x )
5216, 24itgreval 22495 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
5352oveq2d 6294 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  =  ( if ( 0  <_  C ,  C , 
0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
5431, 35itgcl 22482 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  e.  CC )
5539, 41itgcl 22482 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  e.  CC )
569, 54, 55subdid 10053 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
57 max1 11439 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
586, 1, 57sylancr 661 . . . . . . . 8  |-  ( ph  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
59 max1 11439 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
606, 16, 59sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
619, 31, 35, 8, 31, 58, 60itgmulc2lem1 22530 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  =  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x )
62 max1 11439 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
636, 37, 62sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
649, 39, 41, 8, 39, 58, 63itgmulc2lem1 22530 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  =  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x )
6561, 64oveq12d 6296 . . . . . 6  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  C ,  C , 
0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
6653, 56, 653eqtrd 2447 . . . . 5  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  =  ( S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
6743, 51, 663eqtr4d 2453 . . . 4  |-  ( ph  ->  S. A ( if ( 0  <_  C ,  C ,  0 )  x.  B )  _d x  =  ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x ) )
6826, 31remulcld 9654 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  e.  RR )
6914, 31, 35iblmulc2 22529 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) ) )  e.  L^1 )
7026, 39remulcld 9654 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  RR )
7114, 39, 41iblmulc2 22529 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  e.  L^1 )
7268, 69, 70, 71itgsub 22524 . . . . 5  |-  ( ph  ->  S. A ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x  =  ( S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
7345oveq2d 6294 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B ) )
7415, 47, 48subdid 10053 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
7573, 74eqtr3d 2445 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
7675itgeq2dv 22480 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x  =  S. A ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) ) )  _d x )
7752oveq2d 6294 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x )  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
7814, 54, 55subdid 10053 . . . . . 6  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) ) )
79 max1 11439 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  -u C  e.  RR )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
806, 11, 79sylancr 661 . . . . . . . 8  |-  ( ph  ->  0  <_  if (
0  <_  -u C ,  -u C ,  0 ) )
8114, 31, 35, 13, 31, 80, 60itgmulc2lem1 22530 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  =  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x )
8214, 39, 41, 13, 39, 80, 63itgmulc2lem1 22530 . . . . . . 7  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  =  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x )
8381, 82oveq12d 6296 . . . . . 6  |-  ( ph  ->  ( ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  B ,  B ,  0 )  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )  =  ( S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
8477, 78, 833eqtrd 2447 . . . . 5  |-  ( ph  ->  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x )  =  ( S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  B ,  B , 
0 ) )  _d x  -  S. A
( if ( 0  <_  -u C ,  -u C ,  0 )  x.  if ( 0  <_  -u B ,  -u B ,  0 ) )  _d x ) )
8572, 76, 843eqtr4d 2453 . . . 4  |-  ( ph  ->  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x  =  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) )
8667, 85oveq12d 6296 . . 3  |-  ( ph  ->  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) ) )
8723, 24itgcl 22482 . . . 4  |-  ( ph  ->  S. A B  _d x  e.  CC )
889, 14, 87subdird 10054 . . 3  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  S. A B  _d x )  =  ( ( if ( 0  <_  C ,  C ,  0 )  x.  S. A B  _d x )  -  ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  S. A B  _d x ) ) )
891, 3syl 17 . . . 4  |-  ( ph  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
9089oveq1d 6293 . . 3  |-  ( ph  ->  ( ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  x.  S. A B  _d x )  =  ( C  x.  S. A B  _d x
) )
9186, 88, 903eqtr2d 2449 . 2  |-  ( ph  ->  ( S. A ( if ( 0  <_  C ,  C , 
0 )  x.  B
)  _d x  -  S. A ( if ( 0  <_  -u C ,  -u C ,  0 )  x.  B )  _d x )  =  ( C  x.  S. A B  _d x ) )
9220, 29, 913eqtrrd 2448 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   ifcif 3885   class class class wbr 4395    |-> cmpt 4453  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522    x. cmul 9527    <_ cle 9659    - cmin 9841   -ucneg 9842   L^1cibl 22318   S.citg 22319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cc 8847  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-disj 4367  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-ofr 6522  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-omul 7172  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-acn 8355  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-rlim 13461  df-sum 13658  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cn 20021  df-cnp 20022  df-cmp 20180  df-tx 20355  df-hmeo 20548  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-ovol 22168  df-vol 22169  df-mbf 22320  df-itg1 22321  df-itg2 22322  df-ibl 22323  df-itg 22324  df-0p 22369
This theorem is referenced by:  itgmulc2  22532
  Copyright terms: Public domain W3C validator