MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem1 Structured version   Unicode version

Theorem itgmulc2lem1 21309
Description: Lemma for itgmulc2 21311: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgmulc2.4  |-  ( ph  ->  C  e.  RR )
itgmulc2.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgmulc2.6  |-  ( ph  ->  0  <_  C )
itgmulc2.7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
itgmulc2lem1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2lem1
StepHypRef Expression
1 itgmulc2.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgmulc2.7 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
3 elrege0 11392 . . . . . . . 8  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
41, 2, 3sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
5 0e0icopnf 11395 . . . . . . . 8  |-  0  e.  ( 0 [,) +oo )
65a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
74, 6ifclda 3821 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  B , 
0 )  e.  ( 0 [,) +oo )
)
87adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) +oo ) )
9 eqid 2443 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
108, 9fmptd 5867 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,) +oo ) )
11 itgmulc2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
121, 2iblpos 21270 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
1311, 12mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
1413simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
15 itgmulc2.4 . . . . 5  |-  ( ph  ->  C  e.  RR )
16 itgmulc2.6 . . . . 5  |-  ( ph  ->  0  <_  C )
17 elrege0 11392 . . . . 5  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
1815, 16, 17sylanbrc 664 . . . 4  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
1910, 14, 18itg2mulc 21225 . . 3  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { C } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( C  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) ) )
20 reex 9373 . . . . . . 7  |-  RR  e.  _V
2120a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  _V )
2215adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  C  e.  RR )
23 fconstmpt 4882 . . . . . . 7  |-  ( RR 
X.  { C }
)  =  ( x  e.  RR  |->  C )
2423a1i 11 . . . . . 6  |-  ( ph  ->  ( RR  X.  { C } )  =  ( x  e.  RR  |->  C ) )
25 eqidd 2444 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
2621, 22, 8, 24, 25offval2 6336 . . . . 5  |-  ( ph  ->  ( ( RR  X.  { C } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  ( C  x.  if ( x  e.  A ,  B ,  0 ) ) ) )
27 oveq2 6099 . . . . . . . 8  |-  ( if ( x  e.  A ,  B ,  0 )  =  B  ->  ( C  x.  if (
x  e.  A ,  B ,  0 ) )  =  ( C  x.  B ) )
28 oveq2 6099 . . . . . . . 8  |-  ( if ( x  e.  A ,  B ,  0 )  =  0  ->  ( C  x.  if (
x  e.  A ,  B ,  0 ) )  =  ( C  x.  0 ) )
2927, 28ifsb 3802 . . . . . . 7  |-  ( C  x.  if ( x  e.  A ,  B ,  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  ( C  x.  0 ) )
30 itgmulc2.1 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
3130mul01d 9568 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  0 )  =  0 )
3231adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( C  x.  0 )  =  0 )
3332ifeq2d 3808 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( C  x.  B
) ,  ( C  x.  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) )
3429, 33syl5eq 2487 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( C  x.  if ( x  e.  A ,  B ,  0 ) )  =  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) )
3534mpteq2dva 4378 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  ( C  x.  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) )
3626, 35eqtrd 2475 . . . 4  |-  ( ph  ->  ( ( RR  X.  { C } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) )
3736fveq2d 5695 . . 3  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { C } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( C  x.  B
) ,  0 ) ) ) )
3819, 37eqtr3d 2477 . 2  |-  ( ph  ->  ( C  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( C  x.  B
) ,  0 ) ) ) )
391, 11, 2itgposval 21273 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
4039oveq2d 6107 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( C  x.  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) ) )
4115adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
4241, 1remulcld 9414 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  RR )
43 itgmulc2.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
4430, 43, 11iblmulc2 21308 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L^1 )
4516adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  C )
4641, 1, 45, 2mulge0d 9916 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( C  x.  B
) )
4742, 44, 46itgposval 21273 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( C  x.  B ) ,  0 ) ) ) )
4838, 40, 473eqtr4d 2485 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972   ifcif 3791   {csn 3877   class class class wbr 4292    e. cmpt 4350    X. cxp 4838   ` cfv 5418  (class class class)co 6091    oFcof 6318   CCcc 9280   RRcr 9281   0cc0 9282    x. cmul 9287   +oocpnf 9415    <_ cle 9419   [,)cico 11302  MblFncmbf 21094   S.2citg2 21096   L^1cibl 21097   S.citg 21098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cc 8604  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-disj 4263  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-ofr 6321  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-omul 6925  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-acn 8112  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cn 18831  df-cnp 18832  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-ovol 20948  df-vol 20949  df-mbf 21099  df-itg1 21100  df-itg2 21101  df-ibl 21102  df-itg 21103  df-0p 21148
This theorem is referenced by:  itgmulc2lem2  21310
  Copyright terms: Public domain W3C validator