MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2 Unicode version

Theorem itgmulc2 19678
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgmulc2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2
StepHypRef Expression
1 itgmulc2.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
21recld 11954 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
32recnd 9070 . . . . . . 7  |-  ( ph  ->  ( Re `  C
)  e.  CC )
43adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
5 itgmulc2.3 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
6 iblmbf 19612 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
8 itgmulc2.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
97, 8mbfmptcl 19482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
109recld 11954 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1110recnd 9070 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
124, 11mulcld 9064 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
139iblcn 19643 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
145, 13mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
1514simpld 446 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
163, 10, 15iblmulc2 19675 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e.  L ^1 )
1712, 16itgcl 19628 . . . 4  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
18 ax-icn 9005 . . . . 5  |-  _i  e.  CC
199imcld 11955 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
2019recnd 9070 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
214, 20mulcld 9064 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  CC )
2214simprd 450 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
233, 19, 22iblmulc2 19675 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e.  L ^1 )
2421, 23itgcl 19628 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
25 mulcl 9030 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
2618, 24, 25sylancr 645 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
271imcld 11955 . . . . . . . . 9  |-  ( ph  ->  ( Im `  C
)  e.  RR )
2827renegcld 9420 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
2928recnd 9070 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  CC )
3029adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  CC )
3130, 20mulcld 9064 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
3229, 19, 22iblmulc2 19675 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e.  L ^1 )
3331, 32itgcl 19628 . . . 4  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
3427recnd 9070 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  CC )
3534adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
3635, 11mulcld 9064 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  CC )
3734, 10, 15iblmulc2 19675 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e.  L ^1 )
3836, 37itgcl 19628 . . . . 5  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
39 mulcl 9030 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
4018, 38, 39sylancr 645 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
4117, 26, 33, 40add4d 9245 . . 3  |-  ( ph  ->  ( ( S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
42 mulcl 9030 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  C )  e.  CC )  -> 
( _i  x.  (
Im `  C )
)  e.  CC )
4318, 34, 42sylancr 645 . . . . 5  |-  ( ph  ->  ( _i  x.  (
Im `  C )
)  e.  CC )
448, 5itgcl 19628 . . . . 5  |-  ( ph  ->  S. A B  _d x  e.  CC )
453, 43, 44adddird 9069 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  x.  S. A B  _d x )  +  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x ) ) )
468, 5itgcnval 19644 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
4746oveq2d 6056 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( ( Re `  C )  x.  ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
4810, 15itgcl 19628 . . . . . . 7  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
4919, 22itgcl 19628 . . . . . . . 8  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
50 mulcl 9030 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
5118, 49, 50sylancr 645 . . . . . . 7  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
523, 48, 51adddid 9068 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
533, 10, 15, 2, 10itgmulc2lem2 19677 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x )
5418a1i 11 . . . . . . . . 9  |-  ( ph  ->  _i  e.  CC )
553, 54, 49mul12d 9231 . . . . . . . 8  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  ( ( Re
`  C )  x.  S. A ( Im
`  B )  _d x ) ) )
563, 19, 22, 2, 19itgmulc2lem2 19677 . . . . . . . . 9  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Im `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )
5756oveq2d 6056 . . . . . . . 8  |-  ( ph  ->  ( _i  x.  (
( Re `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
5855, 57eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
5953, 58oveq12d 6058 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
6047, 52, 593eqtrd 2440 . . . . 5  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
6146oveq2d 6056 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
6243, 48, 51adddid 9068 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
6354, 34, 48mulassd 9067 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x ) ) )
6434, 10, 15, 27, 10itgmulc2lem2 19677 . . . . . . . . . 10  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )
6564oveq2d 6056 . . . . . . . . 9  |-  ( ph  ->  ( _i  x.  (
( Im `  C
)  x.  S. A
( Re `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
6663, 65eqtrd 2436 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) )
6754, 34, 54, 49mul4d 9234 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) ) )
68 ixi 9607 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
6968oveq1i 6050 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x ) )  =  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7034, 49mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x )  e.  CC )
7170mulm1d 9441 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7269, 71syl5eq 2448 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  _i )  x.  (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  -u (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )
7334, 49mulneg1d 9442 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7429, 19, 22, 28, 19itgmulc2lem2 19677 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
7573, 74eqtr3d 2438 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
7667, 72, 753eqtrd 2440 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x )
7766, 76oveq12d 6058 . . . . . . 7  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( _i  x.  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
7840, 33addcomd 9224 . . . . . . 7  |-  ( ph  ->  ( ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  =  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
7977, 78eqtrd 2436 . . . . . 6  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
8061, 62, 793eqtrd 2440 . . . . 5  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
8160, 80oveq12d 6058 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A B  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  S. A B  _d x ) )  =  ( ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) ) )
8245, 81eqtrd 2436 . . 3  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )  +  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
8335, 20mulcld 9064 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
8412, 83negsubd 9373 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  -u (
( Im `  C
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
8535, 20mulneg1d 9442 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
8685oveq2d 6056 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( ( ( Re `  C )  x.  ( Re `  B ) )  + 
-u ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
871adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
8887, 9remuld 11978 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
8984, 86, 883eqtr4d 2446 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( Re `  ( C  x.  B
) ) )
9089itgeq2dv 19626 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) )  _d x  =  S. A
( Re `  ( C  x.  B )
)  _d x )
9112, 16, 31, 32itgadd 19669 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
9290, 91eqtr3d 2438 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
9387, 9immuld 11979 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
9493itgeq2dv 19626 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) )  _d x )
9521, 23, 36, 37itgadd 19669 . . . . . . 7  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9694, 95eqtrd 2436 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9796oveq2d 6056 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( _i  x.  ( S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x  +  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
9854, 24, 38adddid 9068 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )  =  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
9997, 98eqtrd 2436 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( ( _i  x.  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
10092, 99oveq12d 6058 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( C  x.  B ) )  _d x  +  ( _i  x.  S. A
( Im `  ( C  x.  B )
)  _d x ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
10141, 82, 1003eqtr4d 2446 . 2  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
1021replimd 11957 . . 3  |-  ( ph  ->  C  =  ( ( Re `  C )  +  ( _i  x.  ( Im `  C ) ) ) )
103102oveq1d 6055 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  +  ( _i  x.  ( Im `  C ) ) )  x.  S. A B  _d x ) )
10487, 9mulcld 9064 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
1051, 8, 5iblmulc2 19675 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
106104, 105itgcnval 19644 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
107101, 103, 1063eqtr4d 2446 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248   Recre 11857   Imcim 11858  MblFncmbf 19459   L ^1cibl 19462   S.citg 19463
This theorem is referenced by:  itgabs  19679  itgsinexplem1  27615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515
  Copyright terms: Public domain W3C validator