MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgfsum Unicode version

Theorem itgfsum 19671
Description: Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014.)
Hypotheses
Ref Expression
itgfsum.1  |-  ( ph  ->  A  e.  dom  vol )
itgfsum.2  |-  ( ph  ->  B  e.  Fin )
itgfsum.3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
itgfsum.4  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  L ^1 )
Assertion
Ref Expression
itgfsum  |-  ( ph  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) )
Distinct variable groups:    x, k, A    B, k, x    ph, k, x
Allowed substitution hints:    C( x, k)    V( x, k)

Proof of Theorem itgfsum
Dummy variables  m  t  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3327 . 2  |-  B  C_  B
2 itgfsum.2 . . 3  |-  ( ph  ->  B  e.  Fin )
3 sseq1 3329 . . . . . 6  |-  ( t  =  (/)  ->  ( t 
C_  B  <->  (/)  C_  B
) )
4 sumeq1 12438 . . . . . . . . . . . 12  |-  ( t  =  (/)  ->  sum_ k  e.  t  C  =  sum_ k  e.  (/)  C )
5 sum0 12470 . . . . . . . . . . . 12  |-  sum_ k  e.  (/)  C  =  0
64, 5syl6eq 2452 . . . . . . . . . . 11  |-  ( t  =  (/)  ->  sum_ k  e.  t  C  = 
0 )
76mpteq2dv 4256 . . . . . . . . . 10  |-  ( t  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  0 ) )
8 fconstmpt 4880 . . . . . . . . . 10  |-  ( A  X.  { 0 } )  =  ( x  e.  A  |->  0 )
97, 8syl6eqr 2454 . . . . . . . . 9  |-  ( t  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( A  X.  { 0 } ) )
109eleq1d 2470 . . . . . . . 8  |-  ( t  =  (/)  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  <->  ( A  X.  { 0 } )  e.  L ^1 ) )
1110anbi1d 686 . . . . . . 7  |-  ( t  =  (/)  ->  ( ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( A  X.  { 0 } )  e.  L ^1 
/\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )
12 itgz 19625 . . . . . . . . 9  |-  S. A
0  _d x  =  0
136adantr 452 . . . . . . . . . 10  |-  ( ( t  =  (/)  /\  x  e.  A )  ->  sum_ k  e.  t  C  = 
0 )
1413itgeq2dv 19626 . . . . . . . . 9  |-  ( t  =  (/)  ->  S. A sum_ k  e.  t  C  _d x  =  S. A 0  _d x )
15 sumeq1 12438 . . . . . . . . . 10  |-  ( t  =  (/)  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  (/)  S. A C  _d x )
16 sum0 12470 . . . . . . . . . 10  |-  sum_ k  e.  (/)  S. A C  _d x  =  0
1715, 16syl6eq 2452 . . . . . . . . 9  |-  ( t  =  (/)  ->  sum_ k  e.  t  S. A C  _d x  =  0 )
1812, 14, 173eqtr4a 2462 . . . . . . . 8  |-  ( t  =  (/)  ->  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)
1918biantrud 494 . . . . . . 7  |-  ( t  =  (/)  ->  ( ( A  X.  { 0 } )  e.  L ^1 
<->  ( ( A  X.  { 0 } )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x ) ) )
2011, 19bitr4d 248 . . . . . 6  |-  ( t  =  (/)  ->  ( ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( A  X.  { 0 } )  e.  L ^1 ) )
213, 20imbi12d 312 . . . . 5  |-  ( t  =  (/)  ->  ( ( t  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( (/)  C_  B  ->  ( A  X.  {
0 } )  e.  L ^1 ) ) )
2221imbi2d 308 . . . 4  |-  ( t  =  (/)  ->  ( (
ph  ->  ( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x ) ) )  <-> 
( ph  ->  ( (/)  C_  B  ->  ( A  X.  { 0 } )  e.  L ^1 ) ) ) )
23 sseq1 3329 . . . . . 6  |-  ( t  =  w  ->  (
t  C_  B  <->  w  C_  B
) )
24 sumeq1 12438 . . . . . . . . 9  |-  ( t  =  w  ->  sum_ k  e.  t  C  =  sum_ k  e.  w  C )
2524mpteq2dv 4256 . . . . . . . 8  |-  ( t  =  w  ->  (
x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  w  C )
)
2625eleq1d 2470 . . . . . . 7  |-  ( t  =  w  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1 
<->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L ^1 ) )
2724adantr 452 . . . . . . . . 9  |-  ( ( t  =  w  /\  x  e.  A )  -> 
sum_ k  e.  t  C  =  sum_ k  e.  w  C )
2827itgeq2dv 19626 . . . . . . . 8  |-  ( t  =  w  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  w  C  _d x )
29 sumeq1 12438 . . . . . . . 8  |-  ( t  =  w  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  w  S. A C  _d x
)
3028, 29eqeq12d 2418 . . . . . . 7  |-  ( t  =  w  ->  ( S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x ) )
3126, 30anbi12d 692 . . . . . 6  |-  ( t  =  w  ->  (
( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )
3223, 31imbi12d 312 . . . . 5  |-  ( t  =  w  ->  (
( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( w  C_  B  ->  ( (
x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1 
/\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) ) )
3332imbi2d 308 . . . 4  |-  ( t  =  w  ->  (
( ph  ->  ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) ) ) )
34 sseq1 3329 . . . . . 6  |-  ( t  =  ( w  u. 
{ z } )  ->  ( t  C_  B 
<->  ( w  u.  {
z } )  C_  B ) )
35 sumeq1 12438 . . . . . . . . 9  |-  ( t  =  ( w  u. 
{ z } )  ->  sum_ k  e.  t  C  =  sum_ k  e.  ( w  u.  {
z } ) C )
3635mpteq2dv 4256 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C ) )
3736eleq1d 2470 . . . . . . 7  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  <->  ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 ) )
3835adantr 452 . . . . . . . . 9  |-  ( ( t  =  ( w  u.  { z } )  /\  x  e.  A )  ->  sum_ k  e.  t  C  =  sum_ k  e.  ( w  u.  { z } ) C )
3938itgeq2dv 19626 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x )
40 sumeq1 12438 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x )
4139, 40eqeq12d 2418 . . . . . . 7  |-  ( t  =  ( w  u. 
{ z } )  ->  ( S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) )
4237, 41anbi12d 692 . . . . . 6  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1 
/\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) )
4334, 42imbi12d 312 . . . . 5  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( (
w  u.  { z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) )
4443imbi2d 308 . . . 4  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( ph  ->  ( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( ( w  u. 
{ z } ) 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) ) )
45 sseq1 3329 . . . . . 6  |-  ( t  =  B  ->  (
t  C_  B  <->  B  C_  B
) )
46 sumeq1 12438 . . . . . . . . 9  |-  ( t  =  B  ->  sum_ k  e.  t  C  =  sum_ k  e.  B  C
)
4746mpteq2dv 4256 . . . . . . . 8  |-  ( t  =  B  ->  (
x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  B  C )
)
4847eleq1d 2470 . . . . . . 7  |-  ( t  =  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1 
<->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  L ^1 ) )
4946adantr 452 . . . . . . . . 9  |-  ( ( t  =  B  /\  x  e.  A )  -> 
sum_ k  e.  t  C  =  sum_ k  e.  B  C )
5049itgeq2dv 19626 . . . . . . . 8  |-  ( t  =  B  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  B  C  _d x )
51 sumeq1 12438 . . . . . . . 8  |-  ( t  =  B  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  B  S. A C  _d x
)
5250, 51eqeq12d 2418 . . . . . . 7  |-  ( t  =  B  ->  ( S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x ) )
5348, 52anbi12d 692 . . . . . 6  |-  ( t  =  B  ->  (
( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) )
5445, 53imbi12d 312 . . . . 5  |-  ( t  =  B  ->  (
( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( B  C_  B  ->  ( (
x  e.  A  |->  sum_ k  e.  B  C
)  e.  L ^1 
/\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) )
5554imbi2d 308 . . . 4  |-  ( t  =  B  ->  (
( ph  ->  ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L ^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) ) )
56 itgfsum.1 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
57 ibl0 19631 . . . . . 6  |-  ( A  e.  dom  vol  ->  ( A  X.  { 0 } )  e.  L ^1 )
5856, 57syl 16 . . . . 5  |-  ( ph  ->  ( A  X.  {
0 } )  e.  L ^1 )
5958a1d 23 . . . 4  |-  ( ph  ->  ( (/)  C_  B  -> 
( A  X.  {
0 } )  e.  L ^1 ) )
60 ssun1 3470 . . . . . . . . . 10  |-  w  C_  ( w  u.  { z } )
61 sstr 3316 . . . . . . . . . 10  |-  ( ( w  C_  ( w  u.  { z } )  /\  ( w  u. 
{ z } ) 
C_  B )  ->  w  C_  B )
6260, 61mpan 652 . . . . . . . . 9  |-  ( ( w  u.  { z } )  C_  B  ->  w  C_  B )
6362imim1i 56 . . . . . . . 8  |-  ( ( w  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )
64 nfcv 2540 . . . . . . . . . . . . . . . . . 18  |-  F/_ m C
65 nfcsb1v 3243 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ m  /  k ]_ C
66 csbeq1a 3219 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
6764, 65, 66cbvsumi 12446 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  ( w  u.  {
z } ) C  =  sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C
68 simprl 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  -.  z  e.  w )
69 disjsn 3828 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  i^i  { z } )  =  (/)  <->  -.  z  e.  w )
7068, 69sylibr 204 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  i^i  { z } )  =  (/) )
7170adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  i^i  {
z } )  =  (/) )
72 eqidd 2405 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  =  ( w  u.  {
z } ) )
732adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  B  e.  Fin )
74 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  C_  B
)
75 ssfi 7288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  Fin  /\  ( w  u.  { z } )  C_  B
)  ->  ( w  u.  { z } )  e.  Fin )
7673, 74, 75syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  e.  Fin )
7776adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  e. 
Fin )
78 simplrr 738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  C_  B )
7978sselda 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  ( w  u.  { z } ) )  ->  m  e.  B )
80 itgfsum.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  L ^1 )
81 iblmbf 19612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  A  |->  C )  e.  L ^1 
->  ( x  e.  A  |->  C )  e. MblFn )
8280, 81syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e. MblFn )
83 itgfsum.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
8483anass1rs 783 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  V )
8582, 84mbfmptcl 19482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  CC )
8685an32s 780 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
8786ralrimiva 2749 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
8887adantlr 696 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
8964nfel1 2550 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ m  C  e.  CC
9065nfel1 2550 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k
[_ m  /  k ]_ C  e.  CC
9166eleq1d 2470 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
9289, 90, 91cbvral 2888 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. k  e.  B  C  e.  CC  <->  A. m  e.  B  [_ m  /  k ]_ C  e.  CC )
9388, 92sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. m  e.  B  [_ m  /  k ]_ C  e.  CC )
9493r19.21bi 2764 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  B )  ->  [_ m  /  k ]_ C  e.  CC )
9579, 94syldan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  ( w  u.  { z } ) )  ->  [_ m  /  k ]_ C  e.  CC )
9671, 72, 77, 95fsumsplit 12488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  (
w  u.  { z } ) [_ m  /  k ]_ C  =  ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  sum_ m  e.  { z }
[_ m  /  k ]_ C ) )
97 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
9874unssbd 3485 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  { z }  C_  B )
9997snss 3886 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  B  <->  { z }  C_  B )
10098, 99sylibr 204 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  z  e.  B )
101100adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  z  e.  B )
102 csbeq1 3214 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  z  ->  [_ m  /  k ]_ C  =  [_ z  /  k ]_ C )
103102eleq1d 2470 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  z  ->  ( [_ m  /  k ]_ C  e.  CC  <->  [_ z  /  k ]_ C  e.  CC )
)
104103rspcv 3008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  ( A. m  e.  B  [_ m  /  k ]_ C  e.  CC  ->  [_ z  /  k ]_ C  e.  CC )
)
105101, 93, 104sylc 58 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  CC )
106102sumsn 12489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  _V  /\  [_ z  /  k ]_ C  e.  CC )  -> 
sum_ m  e.  { z } [_ m  / 
k ]_ C  =  [_ z  /  k ]_ C
)
10797, 105, 106sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  { z } [_ m  / 
k ]_ C  =  [_ z  /  k ]_ C
)
108107oveq2d 6056 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  sum_ m  e. 
{ z } [_ m  /  k ]_ C
)  =  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C ) )
10996, 108eqtrd 2436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  (
w  u.  { z } ) [_ m  /  k ]_ C  =  ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
) )
11067, 109syl5eq 2448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( w  u.  { z } ) C  =  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C ) )
111110mpteq2dva 4255 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( x  e.  A  |->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C ) ) )
112 nfcv 2540 . . . . . . . . . . . . . . . 16  |-  F/_ y
( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C )
113 nfcsb1v 3243 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
114 nfcv 2540 . . . . . . . . . . . . . . . . 17  |-  F/_ x  +
115 nfcsb1v 3243 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ y  /  x ]_ [_ z  /  k ]_ C
116113, 114, 115nfov 6063 . . . . . . . . . . . . . . . 16  |-  F/_ x
( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C )
117 csbeq1a 3219 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  sum_ m  e.  w  [_ m  / 
k ]_ C  =  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
)
118 csbeq1a 3219 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  [_ z  /  k ]_ C  =  [_ y  /  x ]_ [_ z  /  k ]_ C )
119117, 118oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C )  =  (
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )
120112, 116, 119cbvmpt 4259 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  |->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C ) )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )
121111, 120syl6eq 2452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) ) )
122121adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) ) )
123 vex 2919 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
124 sumex 12436 . . . . . . . . . . . . . . . 16  |-  sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V
125123, 124csbex 3222 . . . . . . . . . . . . . . 15  |-  [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V
126125a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  /\  y  e.  A )  ->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V )
12764, 65, 66cbvsumi 12446 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C
128127mpteq2i 4252 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ m  e.  w  [_ m  /  k ]_ C )
129 nfcv 2540 . . . . . . . . . . . . . . . . 17  |-  F/_ y sum_ m  e.  w  [_ m  /  k ]_ C
130129, 113, 117cbvmpt 4259 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  sum_ m  e.  w  [_ m  / 
k ]_ C )  =  ( y  e.  A  |-> 
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C )
131128, 130eqtri 2424 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C )
132 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1 )
133131, 132syl5eqelr 2489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
)  e.  L ^1 )
134 elex 2924 . . . . . . . . . . . . . . . . . . 19  |-  ( [_ z  /  k ]_ C  e.  CC  ->  [_ z  / 
k ]_ C  e.  _V )
135105, 134syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  _V )
136135ralrimiva 2749 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  A. x  e.  A  [_ z  / 
k ]_ C  e.  _V )
137136adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  A. x  e.  A  [_ z  / 
k ]_ C  e.  _V )
138 nfv 1626 . . . . . . . . . . . . . . . . 17  |-  F/ y
[_ z  /  k ]_ C  e.  _V
139115nfel1 2550 . . . . . . . . . . . . . . . . 17  |-  F/ x [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V
140118eleq1d 2470 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( [_ z  /  k ]_ C  e.  _V  <->  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
)
141138, 139, 140cbvral 2888 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  [_ z  /  k ]_ C  e.  _V  <->  A. y  e.  A  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
142137, 141sylib 189 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  A. y  e.  A  [_ y  /  x ]_ [_ z  / 
k ]_ C  e.  _V )
143142r19.21bi 2764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  /\  y  e.  A )  ->  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
144 nfcv 2540 . . . . . . . . . . . . . . . . 17  |-  F/_ y [_ z  /  k ]_ C
145144, 115, 118cbvmpt 4259 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  [_ z  /  k ]_ C
)  =  ( y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)
14680ralrimiva 2749 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  L ^1 )
147 nfv 1626 . . . . . . . . . . . . . . . . . . . 20  |-  F/ m
( x  e.  A  |->  C )  e.  L ^1
148 nfcv 2540 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k A
149148, 65nfmpt 4257 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k
( x  e.  A  |-> 
[_ m  /  k ]_ C )
150149nfel1 2550 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1
15166mpteq2dv 4256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  m  ->  (
x  e.  A  |->  C )  =  ( x  e.  A  |->  [_ m  /  k ]_ C
) )
152151eleq1d 2470 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  m  ->  (
( x  e.  A  |->  C )  e.  L ^1 
<->  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1 ) )
153147, 150, 152cbvral 2888 . . . . . . . . . . . . . . . . . . 19  |-  ( A. k  e.  B  (
x  e.  A  |->  C )  e.  L ^1  <->  A. m  e.  B  ( x  e.  A  |->  [_ m  /  k ]_ C
)  e.  L ^1 )
154146, 153sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. m  e.  B  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1 )
155154adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  A. m  e.  B  ( x  e.  A  |->  [_ m  /  k ]_ C
)  e.  L ^1 )
156102mpteq2dv 4256 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  z  ->  (
x  e.  A  |->  [_ m  /  k ]_ C
)  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
157156eleq1d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  z  ->  (
( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1 
<->  ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  L ^1 ) )
158157rspcv 3008 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  ( A. m  e.  B  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1  ->  ( x  e.  A  |->  [_ z  /  k ]_ C )  e.  L ^1 ) )
159100, 155, 158sylc 58 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  [_ z  /  k ]_ C
)  e.  L ^1 )
160145, 159syl5eqelr 2489 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)  e.  L ^1 )
161160adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)  e.  L ^1 )
162126, 133, 143, 161ibladd 19665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  (
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )  e.  L ^1 )
163122, 162eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1 )
164126, 133, 143, 161itgadd 19669 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ y  /  x ]_ [_ z  /  k ]_ C
)  _d y  =  ( S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y  +  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
) )
165119, 112, 116cbvitg 19620 . . . . . . . . . . . . . . 15  |-  S. A
( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C )  _d x  =  S. A
( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C )  _d y
166117, 129, 113cbvitg 19620 . . . . . . . . . . . . . . . 16  |-  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  =  S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y
167118, 144, 115cbvitg 19620 . . . . . . . . . . . . . . . 16  |-  S. A [_ z  /  k ]_ C  _d x  =  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
168166, 167oveq12i 6052 . . . . . . . . . . . . . . 15  |-  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
)  =  ( S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y  +  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
)
169164, 165, 1683eqtr4g 2461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x  =  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
) )
170109itgeq2dv 19626 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x )
171170adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x )
172 eqidd 2405 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  =  ( w  u.  { z } ) )
17374sselda 3308 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  ( w  u.  { z } ) )  ->  m  e.  B )
17494an32s 780 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  m  e.  B
)  /\  x  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
175155r19.21bi 2764 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  B )  ->  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L ^1 )
176174, 175itgcl 19628 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  B )  ->  S. A [_ m  /  k ]_ C  _d x  e.  CC )
177173, 176syldan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  ( w  u.  { z } ) )  ->  S. A [_ m  /  k ]_ C  _d x  e.  CC )
17870, 172, 76, 177fsumsplit 12488 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
179178adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
180 simprr 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)
181 itgeq2 19622 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  A  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C  ->  S. A sum_ k  e.  w  C  _d x  =  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x )
182127a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  A  ->  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C
)
183181, 182mprg 2735 . . . . . . . . . . . . . . . . 17  |-  S. A sum_ k  e.  w  C  _d x  =  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x
184 nfcv 2540 . . . . . . . . . . . . . . . . . 18  |-  F/_ m S. A C  _d x
185148, 65nfitg 19619 . . . . . . . . . . . . . . . . . 18  |-  F/_ k S. A [_ m  / 
k ]_ C  _d x
18666adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  =  m  /\  x  e.  A )  ->  C  =  [_ m  /  k ]_ C
)
187186itgeq2dv 19626 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  S. A C  _d x  =  S. A [_ m  /  k ]_ C  _d x )
188184, 185, 187cbvsumi 12446 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  w  S. A C  _d x  =  sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x
189180, 183, 1883eqtr3g 2459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  =  sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x
)
190105, 159itgcl 19628 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  S. A [_ z  /  k ]_ C  _d x  e.  CC )
191190adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A [_ z  /  k ]_ C  _d x  e.  CC )
192102adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  =  z  /\  x  e.  A )  ->  [_ m  /  k ]_ C  =  [_ z  /  k ]_ C
)
193192itgeq2dv 19626 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  z  ->  S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x )
194193sumsn 12489 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  S. A [_ z  / 
k ]_ C  _d x  e.  CC )  ->  sum_ m  e.  { z } S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x
)
19597, 191, 194sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  { z } S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x )
196195eqcomd 2409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A [_ z  /  k ]_ C  _d x  =  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
)
197189, 196oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
)  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
198179, 197eqtr4d 2439 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
) )
199169, 171, 1983eqtr4d 2446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  sum_ m  e.  ( w  u. 
{ z } ) S. A [_ m  /  k ]_ C  _d x )
200 itgeq2 19622 . . . . . . . . . . . . . 14  |-  ( A. x  e.  A  sum_ k  e.  ( w  u.  { z } ) C  =  sum_ m  e.  ( w  u.  {
z } ) [_ m  /  k ]_ C  ->  S. A sum_ k  e.  ( w  u.  {
z } ) C  _d x  =  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x )
20167a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  sum_ k  e.  ( w  u.  {
z } ) C  =  sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C
)
202200, 201mprg 2735 . . . . . . . . . . . . 13  |-  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  S. A sum_ m  e.  ( w  u. 
{ z } )
[_ m  /  k ]_ C  _d x
203184, 185, 187cbvsumi 12446 . . . . . . . . . . . . 13  |-  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x  =  sum_ m  e.  ( w  u.  { z } ) S. A [_ m  /  k ]_ C  _d x
204199, 202, 2033eqtr4g 2461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x )
205163, 204jca 519 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( x  e.  A  |-> 
sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) )
206205ex 424 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)  ->  ( (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) )
207206expr 599 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1 
/\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)  ->  ( (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) )
208207a2d 24 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( ( w  u. 
{ z } ) 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) )
20963, 208syl5 30 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) )
210209expcom 425 . . . . . 6  |-  ( -.  z  e.  w  -> 
( ph  ->  ( ( w  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) ) )
211210adantl 453 . . . . 5  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ph  ->  ( ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L ^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) ) )
212211a2d 24 . . . 4  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ( ph  ->  ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L ^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )  -> 
( ph  ->  ( ( w  u.  { z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L ^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) ) )
21322, 33, 44, 55, 59, 212findcard2s 7308 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) )
2142, 213mpcom 34 . 2  |-  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) )
2151, 214mpi 17 1  |-  ( ph  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L ^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   [_csb 3211    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774    e. cmpt 4226    X. cxp 4835   dom cdm 4837  (class class class)co 6040   Fincfn 7068   CCcc 8944   0cc0 8946    + caddc 8949   sum_csu 12434   volcvol 19313  MblFncmbf 19459   L ^1cibl 19462   S.citg 19463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cmp 17404  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515
  Copyright terms: Public domain W3C validator