MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgfsum Structured version   Unicode version

Theorem itgfsum 22358
Description: Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014.)
Hypotheses
Ref Expression
itgfsum.1  |-  ( ph  ->  A  e.  dom  vol )
itgfsum.2  |-  ( ph  ->  B  e.  Fin )
itgfsum.3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
itgfsum.4  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  L^1 )
Assertion
Ref Expression
itgfsum  |-  ( ph  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) )
Distinct variable groups:    x, k, A    B, k, x    ph, k, x
Allowed substitution hints:    C( x, k)    V( x, k)

Proof of Theorem itgfsum
Dummy variables  m  t  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3518 . 2  |-  B  C_  B
2 itgfsum.2 . . 3  |-  ( ph  ->  B  e.  Fin )
3 sseq1 3520 . . . . . 6  |-  ( t  =  (/)  ->  ( t 
C_  B  <->  (/)  C_  B
) )
4 sumeq1 13522 . . . . . . . . . . . 12  |-  ( t  =  (/)  ->  sum_ k  e.  t  C  =  sum_ k  e.  (/)  C )
5 sum0 13554 . . . . . . . . . . . 12  |-  sum_ k  e.  (/)  C  =  0
64, 5syl6eq 2514 . . . . . . . . . . 11  |-  ( t  =  (/)  ->  sum_ k  e.  t  C  = 
0 )
76mpteq2dv 4544 . . . . . . . . . 10  |-  ( t  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  0 ) )
8 fconstmpt 5052 . . . . . . . . . 10  |-  ( A  X.  { 0 } )  =  ( x  e.  A  |->  0 )
97, 8syl6eqr 2516 . . . . . . . . 9  |-  ( t  =  (/)  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( A  X.  { 0 } ) )
109eleq1d 2526 . . . . . . . 8  |-  ( t  =  (/)  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  <-> 
( A  X.  {
0 } )  e.  L^1 ) )
1110anbi1d 704 . . . . . . 7  |-  ( t  =  (/)  ->  ( ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( A  X.  { 0 } )  e.  L^1 
/\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )
12 itgz 22312 . . . . . . . . 9  |-  S. A
0  _d x  =  0
136adantr 465 . . . . . . . . . 10  |-  ( ( t  =  (/)  /\  x  e.  A )  ->  sum_ k  e.  t  C  = 
0 )
1413itgeq2dv 22313 . . . . . . . . 9  |-  ( t  =  (/)  ->  S. A sum_ k  e.  t  C  _d x  =  S. A 0  _d x )
15 sumeq1 13522 . . . . . . . . . 10  |-  ( t  =  (/)  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  (/)  S. A C  _d x )
16 sum0 13554 . . . . . . . . . 10  |-  sum_ k  e.  (/)  S. A C  _d x  =  0
1715, 16syl6eq 2514 . . . . . . . . 9  |-  ( t  =  (/)  ->  sum_ k  e.  t  S. A C  _d x  =  0 )
1812, 14, 173eqtr4a 2524 . . . . . . . 8  |-  ( t  =  (/)  ->  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)
1918biantrud 507 . . . . . . 7  |-  ( t  =  (/)  ->  ( ( A  X.  { 0 } )  e.  L^1 
<->  ( ( A  X.  { 0 } )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x ) ) )
2011, 19bitr4d 256 . . . . . 6  |-  ( t  =  (/)  ->  ( ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( A  X.  { 0 } )  e.  L^1 ) )
213, 20imbi12d 320 . . . . 5  |-  ( t  =  (/)  ->  ( ( t  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( (/)  C_  B  ->  ( A  X.  {
0 } )  e.  L^1 ) ) )
2221imbi2d 316 . . . 4  |-  ( t  =  (/)  ->  ( (
ph  ->  ( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x ) ) )  <-> 
( ph  ->  ( (/)  C_  B  ->  ( A  X.  { 0 } )  e.  L^1 ) ) ) )
23 sseq1 3520 . . . . . 6  |-  ( t  =  w  ->  (
t  C_  B  <->  w  C_  B
) )
24 sumeq1 13522 . . . . . . . . 9  |-  ( t  =  w  ->  sum_ k  e.  t  C  =  sum_ k  e.  w  C )
2524mpteq2dv 4544 . . . . . . . 8  |-  ( t  =  w  ->  (
x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  w  C )
)
2625eleq1d 2526 . . . . . . 7  |-  ( t  =  w  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1 
<->  ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L^1 ) )
2724adantr 465 . . . . . . . . 9  |-  ( ( t  =  w  /\  x  e.  A )  -> 
sum_ k  e.  t  C  =  sum_ k  e.  w  C )
2827itgeq2dv 22313 . . . . . . . 8  |-  ( t  =  w  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  w  C  _d x )
29 sumeq1 13522 . . . . . . . 8  |-  ( t  =  w  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  w  S. A C  _d x
)
3028, 29eqeq12d 2479 . . . . . . 7  |-  ( t  =  w  ->  ( S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x ) )
3126, 30anbi12d 710 . . . . . 6  |-  ( t  =  w  ->  (
( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )
3223, 31imbi12d 320 . . . . 5  |-  ( t  =  w  ->  (
( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( w  C_  B  ->  ( (
x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1 
/\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) ) )
3332imbi2d 316 . . . 4  |-  ( t  =  w  ->  (
( ph  ->  ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) ) ) )
34 sseq1 3520 . . . . . 6  |-  ( t  =  ( w  u. 
{ z } )  ->  ( t  C_  B 
<->  ( w  u.  {
z } )  C_  B ) )
35 sumeq1 13522 . . . . . . . . 9  |-  ( t  =  ( w  u. 
{ z } )  ->  sum_ k  e.  t  C  =  sum_ k  e.  ( w  u.  {
z } ) C )
3635mpteq2dv 4544 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  ( x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C ) )
3736eleq1d 2526 . . . . . . 7  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  <->  ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 ) )
3835adantr 465 . . . . . . . . 9  |-  ( ( t  =  ( w  u.  { z } )  /\  x  e.  A )  ->  sum_ k  e.  t  C  =  sum_ k  e.  ( w  u.  { z } ) C )
3938itgeq2dv 22313 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x )
40 sumeq1 13522 . . . . . . . 8  |-  ( t  =  ( w  u. 
{ z } )  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x )
4139, 40eqeq12d 2479 . . . . . . 7  |-  ( t  =  ( w  u. 
{ z } )  ->  ( S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) )
4237, 41anbi12d 710 . . . . . 6  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1 
/\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) )
4334, 42imbi12d 320 . . . . 5  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( (
w  u.  { z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) )
4443imbi2d 316 . . . 4  |-  ( t  =  ( w  u. 
{ z } )  ->  ( ( ph  ->  ( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( ( w  u. 
{ z } ) 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) ) )
45 sseq1 3520 . . . . . 6  |-  ( t  =  B  ->  (
t  C_  B  <->  B  C_  B
) )
46 sumeq1 13522 . . . . . . . . 9  |-  ( t  =  B  ->  sum_ k  e.  t  C  =  sum_ k  e.  B  C
)
4746mpteq2dv 4544 . . . . . . . 8  |-  ( t  =  B  ->  (
x  e.  A  |->  sum_ k  e.  t  C )  =  ( x  e.  A  |->  sum_ k  e.  B  C )
)
4847eleq1d 2526 . . . . . . 7  |-  ( t  =  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1 
<->  ( x  e.  A  |-> 
sum_ k  e.  B  C )  e.  L^1 ) )
4946adantr 465 . . . . . . . . 9  |-  ( ( t  =  B  /\  x  e.  A )  -> 
sum_ k  e.  t  C  =  sum_ k  e.  B  C )
5049itgeq2dv 22313 . . . . . . . 8  |-  ( t  =  B  ->  S. A sum_ k  e.  t  C  _d x  =  S. A sum_ k  e.  B  C  _d x )
51 sumeq1 13522 . . . . . . . 8  |-  ( t  =  B  ->  sum_ k  e.  t  S. A C  _d x  =  sum_ k  e.  B  S. A C  _d x
)
5250, 51eqeq12d 2479 . . . . . . 7  |-  ( t  =  B  ->  ( S. A sum_ k  e.  t  C  _d x  = 
sum_ k  e.  t  S. A C  _d x  <->  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x ) )
5348, 52anbi12d 710 . . . . . 6  |-  ( t  =  B  ->  (
( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
)  <->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) )
5445, 53imbi12d 320 . . . . 5  |-  ( t  =  B  ->  (
( t  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) )  <->  ( B  C_  B  ->  ( (
x  e.  A  |->  sum_ k  e.  B  C
)  e.  L^1 
/\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) )
5554imbi2d 316 . . . 4  |-  ( t  =  B  ->  (
( ph  ->  ( t 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  t  C )  e.  L^1  /\  S. A sum_ k  e.  t  C  _d x  =  sum_ k  e.  t  S. A C  _d x
) ) )  <->  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) ) )
56 itgfsum.1 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
57 ibl0 22318 . . . . . 6  |-  ( A  e.  dom  vol  ->  ( A  X.  { 0 } )  e.  L^1 )
5856, 57syl 16 . . . . 5  |-  ( ph  ->  ( A  X.  {
0 } )  e.  L^1 )
5958a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  B  -> 
( A  X.  {
0 } )  e.  L^1 ) )
60 ssun1 3663 . . . . . . . . . 10  |-  w  C_  ( w  u.  { z } )
61 sstr 3507 . . . . . . . . . 10  |-  ( ( w  C_  ( w  u.  { z } )  /\  ( w  u. 
{ z } ) 
C_  B )  ->  w  C_  B )
6260, 61mpan 670 . . . . . . . . 9  |-  ( ( w  u.  { z } )  C_  B  ->  w  C_  B )
6362imim1i 58 . . . . . . . 8  |-  ( ( w  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )
64 nfcv 2619 . . . . . . . . . . . . . . . . . 18  |-  F/_ m C
65 nfcsb1v 3446 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ m  /  k ]_ C
66 csbeq1a 3439 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
6764, 65, 66cbvsumi 13530 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  ( w  u.  {
z } ) C  =  sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C
68 simprl 756 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  -.  z  e.  w )
69 disjsn 4092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  i^i  { z } )  =  (/)  <->  -.  z  e.  w )
7068, 69sylibr 212 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  i^i  { z } )  =  (/) )
7170adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  i^i  {
z } )  =  (/) )
72 eqidd 2458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  =  ( w  u.  {
z } ) )
732adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  B  e.  Fin )
74 simprr 757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  C_  B
)
75 ssfi 7759 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  Fin  /\  ( w  u.  { z } )  C_  B
)  ->  ( w  u.  { z } )  e.  Fin )
7673, 74, 75syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  e.  Fin )
7776adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  e. 
Fin )
78 simplrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( w  u.  {
z } )  C_  B )
7978sselda 3499 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  ( w  u.  { z } ) )  ->  m  e.  B )
80 itgfsum.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e.  L^1 )
81 iblmbf 22299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
8280, 81syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  B )  ->  (
x  e.  A  |->  C )  e. MblFn )
83 itgfsum.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  V )
8483anass1rs 807 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  V )
8582, 84mbfmptcl 22169 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  B )  /\  x  e.  A )  ->  C  e.  CC )
8685an32s 804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
8786ralrimiva 2871 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
8887adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. k  e.  B  C  e.  CC )
8964nfel1 2635 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ m  C  e.  CC
9065nfel1 2635 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k
[_ m  /  k ]_ C  e.  CC
9166eleq1d 2526 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
9289, 90, 91cbvral 3080 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. k  e.  B  C  e.  CC  <->  A. m  e.  B  [_ m  /  k ]_ C  e.  CC )
9388, 92sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  A. m  e.  B  [_ m  /  k ]_ C  e.  CC )
9493r19.21bi 2826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  B )  ->  [_ m  /  k ]_ C  e.  CC )
9579, 94syldan 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  x  e.  A
)  /\  m  e.  ( w  u.  { z } ) )  ->  [_ m  /  k ]_ C  e.  CC )
9671, 72, 77, 95fsumsplit 13573 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  (
w  u.  { z } ) [_ m  /  k ]_ C  =  ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  sum_ m  e.  { z }
[_ m  /  k ]_ C ) )
97 vex 3112 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
9874unssbd 3678 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  { z }  C_  B )
9997snss 4156 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  B  <->  { z }  C_  B )
10098, 99sylibr 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  z  e.  B )
101100adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  z  e.  B )
102 csbeq1 3433 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  z  ->  [_ m  /  k ]_ C  =  [_ z  /  k ]_ C )
103102eleq1d 2526 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  z  ->  ( [_ m  /  k ]_ C  e.  CC  <->  [_ z  /  k ]_ C  e.  CC )
)
104103rspcv 3206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  ( A. m  e.  B  [_ m  /  k ]_ C  e.  CC  ->  [_ z  /  k ]_ C  e.  CC )
)
105101, 93, 104sylc 60 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  CC )
106102sumsn 13574 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  _V  /\  [_ z  /  k ]_ C  e.  CC )  -> 
sum_ m  e.  { z } [_ m  / 
k ]_ C  =  [_ z  /  k ]_ C
)
10797, 105, 106sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  { z } [_ m  / 
k ]_ C  =  [_ z  /  k ]_ C
)
108107oveq2d 6312 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  sum_ m  e. 
{ z } [_ m  /  k ]_ C
)  =  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C ) )
10996, 108eqtrd 2498 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ m  e.  (
w  u.  { z } ) [_ m  /  k ]_ C  =  ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
) )
11067, 109syl5eq 2510 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  -> 
sum_ k  e.  ( w  u.  { z } ) C  =  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C ) )
111110mpteq2dva 4543 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( x  e.  A  |->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C ) ) )
112 nfcv 2619 . . . . . . . . . . . . . . . 16  |-  F/_ y
( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C )
113 nfcsb1v 3446 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
114 nfcv 2619 . . . . . . . . . . . . . . . . 17  |-  F/_ x  +
115 nfcsb1v 3446 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ y  /  x ]_ [_ z  /  k ]_ C
116113, 114, 115nfov 6322 . . . . . . . . . . . . . . . 16  |-  F/_ x
( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C )
117 csbeq1a 3439 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  sum_ m  e.  w  [_ m  / 
k ]_ C  =  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
)
118 csbeq1a 3439 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  [_ z  /  k ]_ C  =  [_ y  /  x ]_ [_ z  /  k ]_ C )
119117, 118oveq12d 6314 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C )  =  (
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )
120112, 116, 119cbvmpt 4547 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  |->  ( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  /  k ]_ C ) )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )
121111, 120syl6eq 2514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) ) )
122121adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  =  ( y  e.  A  |->  ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) ) )
123 sumex 13521 . . . . . . . . . . . . . . . 16  |-  sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V
124123csbex 4590 . . . . . . . . . . . . . . 15  |-  [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V
125124a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  /\  y  e.  A )  ->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  e.  _V )
12664, 65, 66cbvsumi 13530 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C
127126mpteq2i 4540 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( x  e.  A  |->  sum_ m  e.  w  [_ m  /  k ]_ C )
128 nfcv 2619 . . . . . . . . . . . . . . . . 17  |-  F/_ y sum_ m  e.  w  [_ m  /  k ]_ C
129128, 113, 117cbvmpt 4547 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  sum_ m  e.  w  [_ m  / 
k ]_ C )  =  ( y  e.  A  |-> 
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C )
130127, 129eqtri 2486 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  |->  sum_ k  e.  w  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C )
131 simprl 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1 )
132130, 131syl5eqelr 2550 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C
)  e.  L^1 )
133 elex 3118 . . . . . . . . . . . . . . . . . . 19  |-  ( [_ z  /  k ]_ C  e.  CC  ->  [_ z  / 
k ]_ C  e.  _V )
134105, 133syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  x  e.  A )  ->  [_ z  /  k ]_ C  e.  _V )
135134ralrimiva 2871 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  A. x  e.  A  [_ z  / 
k ]_ C  e.  _V )
136135adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  A. x  e.  A  [_ z  / 
k ]_ C  e.  _V )
137 nfv 1708 . . . . . . . . . . . . . . . . 17  |-  F/ y
[_ z  /  k ]_ C  e.  _V
138115nfel1 2635 . . . . . . . . . . . . . . . . 17  |-  F/ x [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V
139118eleq1d 2526 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( [_ z  /  k ]_ C  e.  _V  <->  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
)
140137, 138, 139cbvral 3080 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  [_ z  /  k ]_ C  e.  _V  <->  A. y  e.  A  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
141136, 140sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  A. y  e.  A  [_ y  /  x ]_ [_ z  / 
k ]_ C  e.  _V )
142141r19.21bi 2826 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  /\  y  e.  A )  ->  [_ y  /  x ]_ [_ z  /  k ]_ C  e.  _V )
143 nfcv 2619 . . . . . . . . . . . . . . . . 17  |-  F/_ y [_ z  /  k ]_ C
144143, 115, 118cbvmpt 4547 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  |->  [_ z  /  k ]_ C
)  =  ( y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)
14580ralrimiva 2871 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. k  e.  B  ( x  e.  A  |->  C )  e.  L^1 )
146 nfv 1708 . . . . . . . . . . . . . . . . . . . 20  |-  F/ m
( x  e.  A  |->  C )  e.  L^1
147 nfcv 2619 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k A
148147, 65nfmpt 4545 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k
( x  e.  A  |-> 
[_ m  /  k ]_ C )
149148nfel1 2635 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1
15066mpteq2dv 4544 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  m  ->  (
x  e.  A  |->  C )  =  ( x  e.  A  |->  [_ m  /  k ]_ C
) )
151150eleq1d 2526 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  m  ->  (
( x  e.  A  |->  C )  e.  L^1 
<->  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1 ) )
152146, 149, 151cbvral 3080 . . . . . . . . . . . . . . . . . . 19  |-  ( A. k  e.  B  (
x  e.  A  |->  C )  e.  L^1  <->  A. m  e.  B  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1 )
153145, 152sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. m  e.  B  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1 )
154153adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  A. m  e.  B  ( x  e.  A  |->  [_ m  /  k ]_ C
)  e.  L^1 )
155102mpteq2dv 4544 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  z  ->  (
x  e.  A  |->  [_ m  /  k ]_ C
)  =  ( x  e.  A  |->  [_ z  /  k ]_ C
) )
156155eleq1d 2526 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  z  ->  (
( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1 
<->  ( x  e.  A  |-> 
[_ z  /  k ]_ C )  e.  L^1 ) )
157156rspcv 3206 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  ( A. m  e.  B  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1  ->  ( x  e.  A  |->  [_ z  /  k ]_ C )  e.  L^1 ) )
158100, 154, 157sylc 60 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
x  e.  A  |->  [_ z  /  k ]_ C
)  e.  L^1 )
159144, 158syl5eqelr 2550 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)  e.  L^1 )
160159adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  [_ y  /  x ]_ [_ z  /  k ]_ C
)  e.  L^1 )
161125, 132, 142, 160ibladd 22352 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
y  e.  A  |->  (
[_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C ) )  e.  L^1 )
162122, 161eqeltrd 2545 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1 )
163125, 132, 142, 160itgadd 22356 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A ( [_ y  /  x ]_ sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ y  /  x ]_ [_ z  /  k ]_ C
)  _d y  =  ( S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y  +  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
) )
164119, 112, 116cbvitg 22307 . . . . . . . . . . . . . . 15  |-  S. A
( sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ z  / 
k ]_ C )  _d x  =  S. A
( [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  +  [_ y  /  x ]_ [_ z  / 
k ]_ C )  _d y
165117, 128, 113cbvitg 22307 . . . . . . . . . . . . . . . 16  |-  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  =  S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y
166118, 143, 115cbvitg 22307 . . . . . . . . . . . . . . . 16  |-  S. A [_ z  /  k ]_ C  _d x  =  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
167165, 166oveq12i 6308 . . . . . . . . . . . . . . 15  |-  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
)  =  ( S. A [_ y  /  x ]_ sum_ m  e.  w  [_ m  /  k ]_ C  _d y  +  S. A [_ y  /  x ]_ [_ z  /  k ]_ C  _d y
)
168163, 164, 1673eqtr4g 2523 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x  =  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
) )
169109itgeq2dv 22313 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x )
170169adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  S. A ( sum_ m  e.  w  [_ m  / 
k ]_ C  +  [_ z  /  k ]_ C
)  _d x )
171 eqidd 2458 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
w  u.  { z } )  =  ( w  u.  { z } ) )
17274sselda 3499 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  ( w  u.  { z } ) )  ->  m  e.  B )
17394an32s 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u. 
{ z } ) 
C_  B ) )  /\  m  e.  B
)  /\  x  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
174154r19.21bi 2826 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  B )  ->  ( x  e.  A  |-> 
[_ m  /  k ]_ C )  e.  L^1 )
175173, 174itgcl 22315 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  B )  ->  S. A [_ m  /  k ]_ C  _d x  e.  CC )
176172, 175syldan 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  m  e.  ( w  u.  { z } ) )  ->  S. A [_ m  /  k ]_ C  _d x  e.  CC )
17770, 171, 76, 176fsumsplit 13573 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
178177adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
179 simprr 757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)
180 itgeq2 22309 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  A  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C  ->  S. A sum_ k  e.  w  C  _d x  =  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x )
181126a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  A  ->  sum_ k  e.  w  C  =  sum_ m  e.  w  [_ m  /  k ]_ C
)
182180, 181mprg 2820 . . . . . . . . . . . . . . . . 17  |-  S. A sum_ k  e.  w  C  _d x  =  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x
183 nfcv 2619 . . . . . . . . . . . . . . . . . 18  |-  F/_ m S. A C  _d x
184147, 65nfitg 22306 . . . . . . . . . . . . . . . . . 18  |-  F/_ k S. A [_ m  / 
k ]_ C  _d x
18566adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  =  m  /\  x  e.  A )  ->  C  =  [_ m  /  k ]_ C
)
186185itgeq2dv 22313 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  S. A C  _d x  =  S. A [_ m  /  k ]_ C  _d x )
187183, 184, 186cbvsumi 13530 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  w  S. A C  _d x  =  sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x
188179, 182, 1873eqtr3g 2521 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  =  sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x
)
189105, 158itgcl 22315 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  S. A [_ z  /  k ]_ C  _d x  e.  CC )
190189adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A [_ z  /  k ]_ C  _d x  e.  CC )
191102adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  =  z  /\  x  e.  A )  ->  [_ m  /  k ]_ C  =  [_ z  /  k ]_ C
)
192191itgeq2dv 22313 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  z  ->  S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x )
193192sumsn 13574 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  S. A [_ z  / 
k ]_ C  _d x  e.  CC )  ->  sum_ m  e.  { z } S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x
)
19497, 190, 193sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  { z } S. A [_ m  /  k ]_ C  _d x  =  S. A [_ z  /  k ]_ C  _d x )
195194eqcomd 2465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A [_ z  /  k ]_ C  _d x  =  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
)
196188, 195oveq12d 6314 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
)  =  ( sum_ m  e.  w  S. A [_ m  /  k ]_ C  _d x  +  sum_ m  e.  {
z } S. A [_ m  /  k ]_ C  _d x
) )
197178, 196eqtr4d 2501 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  sum_ m  e.  ( w  u.  {
z } ) S. A [_ m  / 
k ]_ C  _d x  =  ( S. A sum_ m  e.  w  [_ m  /  k ]_ C  _d x  +  S. A [_ z  /  k ]_ C  _d x
) )
198168, 170, 1973eqtr4d 2508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x  =  sum_ m  e.  ( w  u. 
{ z } ) S. A [_ m  /  k ]_ C  _d x )
199 itgeq2 22309 . . . . . . . . . . . . . 14  |-  ( A. x  e.  A  sum_ k  e.  ( w  u.  { z } ) C  =  sum_ m  e.  ( w  u.  {
z } ) [_ m  /  k ]_ C  ->  S. A sum_ k  e.  ( w  u.  {
z } ) C  _d x  =  S. A sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C  _d x )
20067a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  sum_ k  e.  ( w  u.  {
z } ) C  =  sum_ m  e.  ( w  u.  { z } ) [_ m  /  k ]_ C
)
201199, 200mprg 2820 . . . . . . . . . . . . 13  |-  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  S. A sum_ m  e.  ( w  u. 
{ z } )
[_ m  /  k ]_ C  _d x
202183, 184, 186cbvsumi 13530 . . . . . . . . . . . . 13  |-  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x  =  sum_ m  e.  ( w  u.  { z } ) S. A [_ m  /  k ]_ C  _d x
203198, 201, 2023eqtr4g 2523 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x )
204162, 203jca 532 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  z  e.  w  /\  ( w  u.  {
z } )  C_  B ) )  /\  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( x  e.  A  |-> 
sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) )
205204ex 434 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  z  e.  w  /\  ( w  u.  { z } )  C_  B
) )  ->  (
( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)  ->  ( (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) )
206205expr 615 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1 
/\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
)  ->  ( (
x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) )
207206a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( ( w  u. 
{ z } ) 
C_  B  ->  (
( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) )
20863, 207syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  w )  ->  (
( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) )
209208expcom 435 . . . . . 6  |-  ( -.  z  e.  w  -> 
( ph  ->  ( ( w  C_  B  ->  ( ( x  e.  A  |-> 
sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) ) )
210209adantl 466 . . . . 5  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ph  ->  ( ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) )  ->  (
( w  u.  {
z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  {
z } ) C )  e.  L^1 
/\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  = 
sum_ k  e.  ( w  u.  { z } ) S. A C  _d x ) ) ) ) )
211210a2d 26 . . . 4  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ( ph  ->  ( w  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  w  C )  e.  L^1  /\  S. A sum_ k  e.  w  C  _d x  =  sum_ k  e.  w  S. A C  _d x
) ) )  -> 
( ph  ->  ( ( w  u.  { z } )  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  ( w  u.  { z } ) C )  e.  L^1  /\  S. A sum_ k  e.  ( w  u.  { z } ) C  _d x  =  sum_ k  e.  ( w  u.  {
z } ) S. A C  _d x ) ) ) ) )
21222, 33, 44, 55, 59, 211findcard2s 7779 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) ) )
2132, 212mpcom 36 . 2  |-  ( ph  ->  ( B  C_  B  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) ) )
2141, 213mpi 17 1  |-  ( ph  ->  ( ( x  e.  A  |->  sum_ k  e.  B  C )  e.  L^1  /\  S. A sum_ k  e.  B  C  _d x  =  sum_ k  e.  B  S. A C  _d x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109   [_csb 3430    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   {csn 4032    |-> cmpt 4515    X. cxp 5006   dom cdm 5008  (class class class)co 6296   Fincfn 7535   CCcc 9507   0cc0 9509    + caddc 9512   sum_csu 13519   volcvol 22000  MblFncmbf 22148   L^1cibl 22151   S.citg 22152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-ofr 6540  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-rlim 13323  df-sum 13520  df-rest 14839  df-topgen 14860  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-top 19525  df-bases 19527  df-topon 19528  df-cmp 20013  df-ovol 22001  df-vol 22002  df-mbf 22153  df-itg1 22154  df-itg2 22155  df-ibl 22156  df-itg 22157  df-0p 22202
This theorem is referenced by:  fourierdlem83  32133
  Copyright terms: Public domain W3C validator