MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Unicode version

Theorem itgeqa 22757
Description: Approximate equality of integrals. If  C ( x )  =  D ( x ) for almost all  x, then  S. B C ( x )  _d x  =  S. B D ( x )  _d x and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
itgeqa.2  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
itgeqa.3  |-  ( ph  ->  A  C_  RR )
itgeqa.4  |-  ( ph  ->  ( vol* `  A )  =  0 )
itgeqa.5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
Assertion
Ref Expression
itgeqa  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem itgeqa
Dummy variables  y 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 itgeqa.4 . . . . 5  |-  ( ph  ->  ( vol* `  A )  =  0 )
3 itgeqa.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
4 itgeqa.1 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
5 itgeqa.2 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
61, 2, 3, 4, 5mbfeqa 22585 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
7 ifan 3955 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
84adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  C  e.  CC )
9 elfzelz 11800 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
109ad2antlr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  k  e.  ZZ )
11 ax-icn 9598 . . . . . . . . . . . . . . . . . 18  |-  _i  e.  CC
12 ine0 10054 . . . . . . . . . . . . . . . . . 18  |-  _i  =/=  0
13 expclz 12296 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1411, 12, 13mp3an12 1350 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1510, 14syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  e.  CC )
16 expne0i 12303 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1711, 12, 16mp3an12 1350 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
1810, 17syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  =/=  0 )
198, 15, 18divcld 10383 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
2019recld 13245 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
21 0re 9643 . . . . . . . . . . . . . 14  |-  0  e.  RR
22 ifcl 3951 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2320, 21, 22sylancl 666 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2423rexrd 9690 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
25 max1 11480 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2621, 20, 25sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
27 elxrge0 11741 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
2824, 26, 27sylanbrc 668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
29 0e0iccpnf 11743 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] +oo )
3029a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,] +oo ) )
3128, 30ifclda 3941 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
327, 31syl5eqel 2514 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
3332adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
34 eqid 2422 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
3533, 34fmptd 6057 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
36 ifan 3955 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
375adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  D  e.  CC )
3837, 15, 18divcld 10383 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( D  /  ( _i ^
k ) )  e.  CC )
3938recld 13245 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )
40 ifcl 3951 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4139, 21, 40sylancl 666 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4241rexrd 9690 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
43 max1 11480 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) )
4421, 39, 43sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
45 elxrge0 11741 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) )
4642, 44, 45sylanbrc 668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
4746, 30ifclda 3941 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
4836, 47syl5eqel 2514 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
4948adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
50 eqid 2422 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
5149, 50fmptd 6057 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
521adantr 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  C_  RR )
532adantr 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol* `  A )  =  0 )
54 simpll 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ph )
55 simpr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  B )
56 eldifn 3588 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
5756ad2antlr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  -.  x  e.  A )
5855, 57eldifd 3447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  ( B  \  A
) )
5954, 58, 3syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  C  =  D )
6059oveq1d 6316 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  ( D  /  (
_i ^ k ) ) )
6160fveq2d 5881 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
6261ibllem 22708 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
63 eldifi 3587 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR  \  A )  ->  x  e.  RR )
6463adantl 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  x  e.  RR )
65 fvex 5887 . . . . . . . . . . . . . 14  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  e. 
_V
66 c0ex 9637 . . . . . . . . . . . . . 14  |-  0  e.  _V
6765, 66ifex 3977 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
6834fvmpt2 5969 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
6964, 67, 68sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
70 fvex 5887 . . . . . . . . . . . . . 14  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  e. 
_V
7170, 66ifex 3977 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
7250fvmpt2 5969 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
7364, 71, 72sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
7462, 69, 733eqtr4d 2473 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x ) )
7574ralrimiva 2839 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x ) )
76 nfv 1751 . . . . . . . . . . 11  |-  F/ y ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )
77 nffvmpt1 5885 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
78 nffvmpt1 5885 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
7977, 78nfeq 2595 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
80 fveq2 5877 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
81 fveq2 5877 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8280, 81eqeq12d 2444 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  <->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) ) )
8376, 79, 82cbvral 3051 . . . . . . . . . 10  |-  ( A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  <->  A. y  e.  ( RR  \  A
) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8475, 83sylib 199 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y ) )
8584r19.21bi 2794 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8685adantlr 719 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  y  e.  ( RR  \  A
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8735, 51, 52, 53, 86itg2eqa 22689 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8887eleq1d 2491 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
8988ralbidva 2861 . . . 4  |-  ( ph  ->  ( A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR  <->  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
906, 89anbi12d 715 . . 3  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
91 eqidd 2423 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
92 eqidd 2423 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
9391, 92, 4isibl2 22710 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L^1  <->  ( (
x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
94 eqidd 2423 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )
95 eqidd 2423 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
9694, 95, 5isibl2 22710 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e.  L^1  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
9790, 93, 963bitr4d 288 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 ) )
9887oveq2d 6317 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
9998sumeq2dv 13756 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
100 eqid 2422 . . . 4  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
101100dfitg 22713 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
102 eqid 2422 . . . 4  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  =  ( Re `  ( D  /  ( _i ^
k ) ) )
103102dfitg 22713 . . 3  |-  S. B D  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
10499, 101, 1033eqtr4g 2488 . 2  |-  ( ph  ->  S. B C  _d x  =  S. B D  _d x )
10597, 104jca 534 1  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   _Vcvv 3081    \ cdif 3433    C_ wss 3436   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   _ici 9541    x. cmul 9544   +oocpnf 9672   RR*cxr 9674    <_ cle 9676    / cdiv 10269   3c3 10660   ZZcz 10937   [,]cicc 11638   ...cfz 11784   ^cexp 12271   Recre 13148   sum_csu 13739   vol*covol 22399  MblFncmbf 22558   S.2citg2 22560   L^1cibl 22561   S.citg 22562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-disj 4392  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-ofr 6542  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-clim 13539  df-sum 13740  df-rest 15308  df-topgen 15329  df-psmet 18949  df-xmet 18950  df-met 18951  df-bl 18952  df-mopn 18953  df-top 19907  df-bases 19908  df-topon 19909  df-cmp 20388  df-ovol 22402  df-vol 22404  df-mbf 22563  df-itg1 22564  df-itg2 22565  df-ibl 22566  df-itg 22567
This theorem is referenced by:  itgss3  22758
  Copyright terms: Public domain W3C validator