MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq1f Structured version   Unicode version

Theorem itgeq1f 21906
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
itgeq1f.1  |-  F/_ x A
itgeq1f.2  |-  F/_ x B
Assertion
Ref Expression
itgeq1f  |-  ( A  =  B  ->  S. A C  _d x  =  S. B C  _d x )

Proof of Theorem itgeq1f
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . . . . 6  |-  RR  =  RR
2 itgeq1f.1 . . . . . . . 8  |-  F/_ x A
3 itgeq1f.2 . . . . . . . 8  |-  F/_ x B
42, 3nfeq 2633 . . . . . . 7  |-  F/ x  A  =  B
5 eleq2 2533 . . . . . . . . . 10  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
65anbi1d 704 . . . . . . . . 9  |-  ( A  =  B  ->  (
( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) )  <-> 
( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ) )
76ifbid 3954 . . . . . . . 8  |-  ( A  =  B  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
87a1d 25 . . . . . . 7  |-  ( A  =  B  ->  (
x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
94, 8ralrimi 2857 . . . . . 6  |-  ( A  =  B  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
10 mpteq12 4519 . . . . . 6  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  -> 
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
111, 9, 10sylancr 663 . . . . 5  |-  ( A  =  B  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
1211fveq2d 5861 . . . 4  |-  ( A  =  B  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
1312oveq2d 6291 . . 3  |-  ( A  =  B  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
1413sumeq2sdv 13475 . 2  |-  ( A  =  B  ->  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
15 eqid 2460 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
1615dfitg 21904 . 2  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
1715dfitg 21904 . 2  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
1814, 16, 173eqtr4g 2526 1  |-  ( A  =  B  ->  S. A C  _d x  =  S. B C  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   F/_wnfc 2608   A.wral 2807   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   RRcr 9480   0cc0 9481   _ici 9483    x. cmul 9486    <_ cle 9618    / cdiv 10195   3c3 10575   ...cfz 11661   ^cexp 12122   Recre 12880   sum_csu 13457   S.2citg2 21753   S.citg 21755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-seq 12064  df-sum 13458  df-itg 21760
This theorem is referenced by:  itgeq1  21907
  Copyright terms: Public domain W3C validator