MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgconst Structured version   Visualization version   Unicode version

Theorem itgconst 22769
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
itgconst  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( B  x.  ( vol `  A
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem itgconst
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recl 13166 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
213ad2ant3 1030 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
3 simplr 761 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  ( vol `  A )  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  /\  x  e.  A
)  ->  y  e.  RR )
4 fconstmpt 4877 . . . . . . . . 9  |-  ( A  X.  { y } )  =  ( x  e.  A  |->  y )
5 simpl1 1010 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  A  e.  dom  vol )
6 simp2 1008 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( vol `  A
)  e.  RR )
76adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( vol `  A
)  e.  RR )
8 simpr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  y  e.  RR )
98recnd 9666 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  y  e.  CC )
10 iblconst 22768 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  y  e.  CC )  ->  ( A  X.  {
y } )  e.  L^1 )
115, 7, 9, 10syl3anc 1267 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( A  X.  { y } )  e.  L^1 )
124, 11syl5eqelr 2533 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( x  e.  A  |->  y )  e.  L^1 )
133, 12itgrevallem1 22745 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  S. A y  _d x  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) ) )
14 ifan 3926 . . . . . . . . . . . 12  |-  if ( ( x  e.  A  /\  0  <_  y ) ,  y ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  y ,  y ,  0 ) ,  0 )
1514mpteq2i 4485 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  y ) ,  y ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) )
1615fveq2i 5866 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) ) )
17 0re 9640 . . . . . . . . . . . . 13  |-  0  e.  RR
18 ifcl 3922 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
y ,  y ,  0 )  e.  RR )
198, 17, 18sylancl 667 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR )
20 max1 11477 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  0  <_  if (
0  <_  y , 
y ,  0 ) )
2117, 8, 20sylancr 668 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  y ,  y ,  0 ) )
22 elrege0 11735 . . . . . . . . . . . 12  |-  ( if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  y ,  y ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  y ,  y ,  0 ) ) )
2319, 21, 22sylanbrc 669 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,) +oo ) )
24 itg2const 22691 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  y ,  y ,  0 )  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A
) ) )
255, 7, 23, 24syl3anc 1267 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
y ,  y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A
) ) )
2616, 25syl5eq 2496 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  =  ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A ) ) )
27 ifan 3926 . . . . . . . . . . . 12  |-  if ( ( x  e.  A  /\  0  <_  -u y
) ,  -u y ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u y , 
-u y ,  0 ) ,  0 )
2827mpteq2i 4485 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y
) ,  -u y ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) )
2928fveq2i 5866 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )
30 renegcl 9934 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  -u y  e.  RR )
3130adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  -u y  e.  RR )
32 ifcl 3922 . . . . . . . . . . . . 13  |-  ( (
-u y  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR )
3331, 17, 32sylancl 667 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR )
34 max1 11477 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u y  e.  RR )  ->  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) )
3517, 31, 34sylancr 668 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) )
36 elrege0 11735 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u y ,  -u y ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u y ,  -u y ,  0 ) ) )
3733, 35, 36sylanbrc 669 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,) +oo ) )
38 itg2const 22691 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  -u y ,  -u y ,  0 )  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  -u y , 
-u y ,  0 )  x.  ( vol `  A ) ) )
395, 7, 37, 38syl3anc 1267 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u y ,  -u y ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_  -u y , 
-u y ,  0 )  x.  ( vol `  A ) ) )
4029, 39syl5eq 2496 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) )  =  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A
) ) )
4126, 40oveq12d 6306 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) )  =  ( ( if ( 0  <_  y , 
y ,  0 )  x.  ( vol `  A
) )  -  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A ) ) ) )
4219recnd 9666 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  y ,  y ,  0 )  e.  CC )
4333recnd 9666 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  if ( 0  <_  -u y ,  -u y ,  0 )  e.  CC )
446recnd 9666 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( vol `  A
)  e.  CC )
4544adantr 467 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( vol `  A
)  e.  CC )
4642, 43, 45subdird 10072 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  x.  ( vol `  A ) )  =  ( ( if ( 0  <_  y ,  y ,  0 )  x.  ( vol `  A ) )  -  ( if ( 0  <_  -u y ,  -u y ,  0 )  x.  ( vol `  A
) ) ) )
47 max0sub 11486 . . . . . . . . . 10  |-  ( y  e.  RR  ->  ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  =  y )
4847adantl 468 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( if ( 0  <_  y , 
y ,  0 )  -  if ( 0  <_  -u y ,  -u y ,  0 ) )  =  y )
4948oveq1d 6303 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( ( if ( 0  <_  y ,  y ,  0 )  -  if ( 0  <_  -u y , 
-u y ,  0 ) )  x.  ( vol `  A ) )  =  ( y  x.  ( vol `  A
) ) )
5041, 46, 493eqtr2rd 2491 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  ( y  x.  ( vol `  A
) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u y ) ,  -u y ,  0 ) ) ) ) )
5113, 50eqtr4d 2487 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  y  e.  RR )  ->  S. A y  _d x  =  ( y  x.  ( vol `  A ) ) )
5251ralrimiva 2801 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) ) )
53 simpl 459 . . . . . . . 8  |-  ( ( y  =  ( Re
`  B )  /\  x  e.  A )  ->  y  =  ( Re
`  B ) )
5453itgeq2dv 22732 . . . . . . 7  |-  ( y  =  ( Re `  B )  ->  S. A y  _d x  =  S. A ( Re `  B )  _d x )
55 oveq1 6295 . . . . . . 7  |-  ( y  =  ( Re `  B )  ->  (
y  x.  ( vol `  A ) )  =  ( ( Re `  B )  x.  ( vol `  A ) ) )
5654, 55eqeq12d 2465 . . . . . 6  |-  ( y  =  ( Re `  B )  ->  ( S. A y  _d x  =  ( y  x.  ( vol `  A
) )  <->  S. A
( Re `  B
)  _d x  =  ( ( Re `  B )  x.  ( vol `  A ) ) ) )
5756rspcv 3145 . . . . 5  |-  ( ( Re `  B )  e.  RR  ->  ( A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) )  ->  S. A ( Re `  B )  _d x  =  ( ( Re
`  B )  x.  ( vol `  A
) ) ) )
582, 52, 57sylc 62 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A ( Re
`  B )  _d x  =  ( ( Re `  B )  x.  ( vol `  A
) ) )
59 imcl 13167 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
60593ad2ant3 1030 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
61 simpl 459 . . . . . . . . . 10  |-  ( ( y  =  ( Im
`  B )  /\  x  e.  A )  ->  y  =  ( Im
`  B ) )
6261itgeq2dv 22732 . . . . . . . . 9  |-  ( y  =  ( Im `  B )  ->  S. A y  _d x  =  S. A ( Im `  B )  _d x )
63 oveq1 6295 . . . . . . . . 9  |-  ( y  =  ( Im `  B )  ->  (
y  x.  ( vol `  A ) )  =  ( ( Im `  B )  x.  ( vol `  A ) ) )
6462, 63eqeq12d 2465 . . . . . . . 8  |-  ( y  =  ( Im `  B )  ->  ( S. A y  _d x  =  ( y  x.  ( vol `  A
) )  <->  S. A
( Im `  B
)  _d x  =  ( ( Im `  B )  x.  ( vol `  A ) ) ) )
6564rspcv 3145 . . . . . . 7  |-  ( ( Im `  B )  e.  RR  ->  ( A. y  e.  RR  S. A y  _d x  =  ( y  x.  ( vol `  A
) )  ->  S. A ( Im `  B )  _d x  =  ( ( Im
`  B )  x.  ( vol `  A
) ) ) )
6660, 52, 65sylc 62 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A ( Im
`  B )  _d x  =  ( ( Im `  B )  x.  ( vol `  A
) ) )
6766oveq2d 6304 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( _i  x.  ( ( Im
`  B )  x.  ( vol `  A
) ) ) )
68 ax-icn 9595 . . . . . . 7  |-  _i  e.  CC
6968a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  _i  e.  CC )
7060recnd 9666 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
7169, 70, 44mulassd 9663 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  B ) )  x.  ( vol `  A ) )  =  ( _i  x.  (
( Im `  B
)  x.  ( vol `  A ) ) ) )
7267, 71eqtr4d 2487 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  S. A ( Im `  B )  _d x )  =  ( ( _i  x.  ( Im
`  B ) )  x.  ( vol `  A
) ) )
7358, 72oveq12d 6306 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( Re `  B
)  x.  ( vol `  A ) )  +  ( ( _i  x.  ( Im `  B ) )  x.  ( vol `  A ) ) ) )
742recnd 9666 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
75 mulcl 9620 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
7668, 70, 75sylancr 668 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
7774, 76, 44adddird 9665 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) )  x.  ( vol `  A ) )  =  ( ( ( Re `  B )  x.  ( vol `  A
) )  +  ( ( _i  x.  (
Im `  B )
)  x.  ( vol `  A ) ) ) )
7873, 77eqtr4d 2487 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A
( Im `  B
)  _d x ) )  =  ( ( ( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) )  x.  ( vol `  A
) ) )
79 simpl3 1012 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
80 fconstmpt 4877 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
81 iblconst 22768 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L^1 )
8280, 81syl5eqelr 2533 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e.  L^1 )
8379, 82itgcnval 22750 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
84 replim 13172 . . . 4  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
85843ad2ant3 1030 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  B  =  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) )
8685oveq1d 6303 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( B  x.  ( vol `  A ) )  =  ( ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  x.  ( vol `  A ) ) )
8778, 83, 863eqtr4d 2494 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  S. A B  _d x  =  ( B  x.  ( vol `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   A.wral 2736   ifcif 3880   {csn 3967   class class class wbr 4401    |-> cmpt 4460    X. cxp 4831   dom cdm 4833   ` cfv 5581  (class class class)co 6288   CCcc 9534   RRcr 9535   0cc0 9536   _ici 9538    + caddc 9539    x. cmul 9541   +oocpnf 9669    <_ cle 9673    - cmin 9857   -ucneg 9858   [,)cico 11634   Recre 13153   Imcim 13154   volcvol 22408   S.2citg2 22567   L^1cibl 22568   S.citg 22569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-ofr 6529  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xadd 11407  df-ioo 11636  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-sum 13746  df-xmet 18956  df-met 18957  df-ovol 22409  df-vol 22411  df-mbf 22570  df-itg1 22571  df-itg2 22572  df-ibl 22573  df-itg 22574  df-0p 22621
This theorem is referenced by:  ftc1lem4  22984  itgulm  23356  ftc1cnnclem  32008  arearect  36094  areaquad  36095  wallispilem2  37922  fourierdlem87  38051  sqwvfoura  38086  etransclem23  38116
  Copyright terms: Public domain W3C validator