MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Unicode version

Theorem itgcn 22415
Description: Transfer itg2cn 22336 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcn.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgcn.3  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itgcn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Distinct variable groups:    u, d, x, A    B, d, u    C, d, u    ph, d, u, x
Allowed substitution hints:    B( x)    C( x)    V( x, u, d)

Proof of Theorem itgcn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 22340 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 itgcn.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 22210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
65abscld 13349 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
75absge0d 13357 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
8 elrege0 11630 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,) +oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_  ( abs `  B ) ) )
96, 7, 8sylanbrc 662 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,) +oo ) )
10 0e0icopnf 11633 . . . . . . 7  |-  0  e.  ( 0 [,) +oo )
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
129, 11ifclda 3961 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
1312adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) +oo ) )
14 eqid 2454 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
1513, 14fmptd 6031 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
163, 4mbfdm2 22211 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
17 mblss 22108 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1816, 17syl 16 . . . 4  |-  ( ph  ->  A  C_  RR )
19 rembl 22117 . . . . 5  |-  RR  e.  dom  vol
2019a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
2112adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  ( 0 [,) +oo ) )
22 eldifn 3613 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
2322adantl 464 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
2423iffalsed 3940 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  B
) ,  0 )  =  0 )
25 iftrue 3935 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
2625mpteq2ia 4521 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  B ) )
274, 1iblabs 22401 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
286, 7iblpos 22365 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
2927, 28mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
3029simpld 457 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
3126, 30syl5eqel 2546 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  e. MblFn )
3218, 20, 21, 24, 31mbfss 22219 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  e. MblFn )
3329simprd 461 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
34 itgcn.3 . . 3  |-  ( ph  ->  C  e.  RR+ )
3515, 32, 33, 34itg2cn 22336 . 2  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
36 simprr 755 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  C_  A )
3736sselda 3489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  x  e.  A )
385adantlr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  B  e.  CC )
3937, 38syldan 468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  B  e.  CC )
4039abscld 13349 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  ( abs `  B )  e.  RR )
41 simprl 754 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  e.  dom  vol )
4238abscld 13349 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
4327adantr 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
4436, 41, 42, 43iblss 22377 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  |->  ( abs `  B
) )  e.  L^1 )
4539absge0d 13357 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  0  <_  ( abs `  B
) )
4640, 44, 45itgposval 22368 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) ) )
4736sseld 3488 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  ->  x  e.  A ) )
4847pm4.71d 632 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  <->  ( x  e.  u  /\  x  e.  A )
) )
4948ifbid 3951 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( ( x  e.  u  /\  x  e.  A ) ,  ( abs `  B
) ,  0 ) )
50 ifan 3975 . . . . . . . . . . . . . . 15  |-  if ( ( x  e.  u  /\  x  e.  A
) ,  ( abs `  B ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 )
5149, 50syl6eq 2511 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ,  0 ) )
5251mpteq2dv 4526 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
5352fveq2d 5852 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
5446, 53eqtrd 2495 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
55 nfv 1712 . . . . . . . . . . . . . . 15  |-  F/ x  y  e.  u
56 nffvmpt1 5856 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y )
57 nfcv 2616 . . . . . . . . . . . . . . 15  |-  F/_ x
0
5855, 56, 57nfif 3958 . . . . . . . . . . . . . 14  |-  F/_ x if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )
59 nfcv 2616 . . . . . . . . . . . . . 14  |-  F/_ y if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )
60 elequ1 1826 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
y  e.  u  <->  x  e.  u ) )
61 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) )
6260, 61ifbieq1d 3952 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )  =  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
6358, 59, 62cbvmpt 4529 . . . . . . . . . . . . 13  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
64 fvex 5858 . . . . . . . . . . . . . . . . 17  |-  ( abs `  B )  e.  _V
65 c0ex 9579 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
6664, 65ifex 3997 . . . . . . . . . . . . . . . 16  |-  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  _V
6714fvmpt2 5939 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  _V )  -> 
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
6866, 67mpan2 669 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
6968ifeq1d 3947 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A , 
( abs `  B
) ,  0 ) ,  0 ) )
7069mpteq2ia 4521 . . . . . . . . . . . . 13  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7163, 70eqtri 2483 . . . . . . . . . . . 12  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7271fveq2i 5851 . . . . . . . . . . 11  |-  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
7354, 72syl6eqr 2513 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) ) )
7473breq1d 4449 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S. u ( abs `  B )  _d x  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
7574biimprd 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C  ->  S. u ( abs `  B
)  _d x  < 
C ) )
7675imim2d 52 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  ( ( vol `  u )  <  d  ->  S. u ( abs `  B )  _d x  <  C ) ) )
7776expr 613 . . . . . 6  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
u  C_  A  ->  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
7877com23 78 . . . . 5  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( u  C_  A  ->  ( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
7978imp4a 587 . . . 4  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8079ralimdva 2862 . . 3  |-  ( ph  ->  ( A. u  e. 
dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8180reximdv 2928 . 2  |-  ( ph  ->  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  B
)  _d x  < 
C ) ) )
8235, 81mpd 15 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    \ cdif 3458    C_ wss 3461   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   +oocpnf 9614    < clt 9617    <_ cle 9618   RR+crp 11221   [,)cico 11534   abscabs 13149   volcvol 22041  MblFncmbf 22189   S.2citg2 22191   L^1cibl 22192   S.citg 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cc 8806  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-cmp 20054  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-ovol 22042  df-vol 22043  df-mbf 22194  df-itg1 22195  df-itg2 22196  df-ibl 22197  df-itg 22198  df-0p 22243
This theorem is referenced by:  ftc1a  22604
  Copyright terms: Public domain W3C validator