Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnclem2 Structured version   Unicode version

Theorem itgaddnclem2 30049
Description: Lemma for itgaddnc 30050; cf. itgaddlem2 22103. (Contributed by Brendan Leahy, 10-Nov-2017.) (Revised by Brendan Leahy, 3-Apr-2018.)
Hypotheses
Ref Expression
ibladdnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
ibladdnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
ibladdnc.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
ibladdnc.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
ibladdnc.m  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
itgaddnclem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgaddnclem.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
Assertion
Ref Expression
itgaddnclem2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddnclem2
StepHypRef Expression
1 itgaddnclem.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 max0sub 11404 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
31, 2syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4 itgaddnclem.2 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
5 max0sub 11404 . . . . . . . . . 10  |-  ( C  e.  RR  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
64, 5syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
73, 6oveq12d 6299 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( B  +  C
) )
8 0re 9599 . . . . . . . . . . 11  |-  0  e.  RR
9 ifcl 3968 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
101, 8, 9sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
1110recnd 9625 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  CC )
12 ifcl 3968 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
134, 8, 12sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
1413recnd 9625 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
151renegcld 9992 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
16 ifcl 3968 . . . . . . . . . . 11  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1715, 8, 16sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1817recnd 9625 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  CC )
194renegcld 9992 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u C  e.  RR )
20 ifcl 3968 . . . . . . . . . . 11  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2119, 8, 20sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2221recnd 9625 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
2311, 14, 18, 22addsub4d 9983 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( ( if ( 0  <_  B ,  B , 
0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
241, 4readdcld 9626 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
25 max0sub 11404 . . . . . . . . 9  |-  ( ( B  +  C )  e.  RR  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
2624, 25syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
277, 23, 263eqtr4rd 2495 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
2824renegcld 9992 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  -u ( B  +  C )  e.  RR )
29 ifcl 3968 . . . . . . . . . 10  |-  ( (
-u ( B  +  C )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  e.  RR )
3028, 8, 29sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  RR )
3130recnd 9625 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  CC )
3210, 13readdcld 9626 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
3332recnd 9625 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  CC )
34 ifcl 3968 . . . . . . . . . 10  |-  ( ( ( B  +  C
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 )  e.  RR )
3524, 8, 34sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  RR )
3635recnd 9625 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  CC )
3717, 21readdcld 9626 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  RR )
3837recnd 9625 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  CC )
3931, 33, 36, 38addsubeq4d 9987 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  <->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) ) )
4027, 39mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
4140itgeq2dv 22061 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x )
42 ibladdnc.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
43 ibladdnc.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
44 ibladdnc.m . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
451, 42, 4, 43, 44ibladdnc 30047 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
4624iblre 22073 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 ) )  e.  L^1 ) ) )
4745, 46mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 ) )
4847simprd 463 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 )
491iblre 22073 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
5042, 49mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) )
5150simpld 459 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L^1 )
524iblre 22073 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) ) )
5343, 52mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) )
5453simpld 459 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  C ,  C , 
0 ) )  e.  L^1 )
55 iblmbf 22047 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
5642, 55syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
57 iblmbf 22047 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
5843, 57syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
5956, 1, 58, 4, 44mbfposadd 30037 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )  e. MblFn )
6010, 51, 13, 54, 59ibladdnc 30047 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )  e.  L^1 )
61 max1 11395 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
628, 1, 61sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
63 max1 11395 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
648, 4, 63sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
6510, 13, 62, 64addge0d 10134 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
6665iftrued 3934 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
6766oveq2d 6297 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  if ( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  =  ( if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
6867mpteq2dva 4523 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  if ( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  =  ( x  e.  A  |->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) ) )
6924, 44mbfneg 21930 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( B  +  C ) )  e. MblFn
)
701recnd 9625 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
714recnd 9625 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7270, 71negdid 9949 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  -u ( B  +  C )  =  ( -u B  +  -u C ) )
7372oveq1d 6296 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( B  +  C
)  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( (
-u B  +  -u C )  +  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
7415recnd 9625 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  CC )
7519recnd 9625 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  -u C  e.  CC )
7674, 75, 11, 14add4d 9808 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( -u B  +  -u C )  +  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  +  ( -u C  +  if (
0  <_  C ,  C ,  0 ) ) ) )
77 negeq 9817 . . . . . . . . . . . . . . . 16  |-  ( B  =  0  ->  -u B  =  -u 0 )
78 neg0 9870 . . . . . . . . . . . . . . . 16  |-  -u 0  =  0
7977, 78syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( B  =  0  ->  -u B  =  0 )
80 0le0 10631 . . . . . . . . . . . . . . . . 17  |-  0  <_  0
8180, 79syl5breqr 4473 . . . . . . . . . . . . . . . 16  |-  ( B  =  0  ->  0  <_ 
-u B )
8281iftrued 3934 . . . . . . . . . . . . . . 15  |-  ( B  =  0  ->  if ( 0  <_  -u B ,  -u B ,  0 )  =  -u B
)
83 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  0  ->  B  =  0 )
8480, 83syl5breqr 4473 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  0  ->  0  <_  B )
8584iftrued 3934 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  0  ->  if ( 0  <_  B ,  B ,  0 )  =  B )
8685, 83eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( B  =  0  ->  if ( 0  <_  B ,  B ,  0 )  =  0 )
8779, 86oveq12d 6299 . . . . . . . . . . . . . . . 16  |-  ( B  =  0  ->  ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  ( 0  +  0 ) )
88 00id 9758 . . . . . . . . . . . . . . . 16  |-  ( 0  +  0 )  =  0
8987, 88syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( B  =  0  ->  ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  0 )
9079, 82, 893eqtr4rd 2495 . . . . . . . . . . . . . 14  |-  ( B  =  0  ->  ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
9190adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =  0 )  -> 
( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
92 ovif2 6365 . . . . . . . . . . . . . 14  |-  ( -u B  +  if (
0  <_  B ,  B ,  0 ) )  =  if ( 0  <_  B , 
( -u B  +  B
) ,  ( -u B  +  0 ) )
9370negne0bd 9929 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =/=  0  <->  -u B  =/=  0 ) )
9493biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  -u B  =/=  0 )
951le0neg2d 10131 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  B  <->  -u B  <_ 
0 ) )
96 leloe 9674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  ( -u B  <_  0  <->  ( -u B  <  0  \/  -u B  =  0 ) ) )
9715, 8, 96sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  <_  0  <->  ( -u B  <  0  \/  -u B  =  0 ) ) )
9895, 97bitrd 253 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  B  <->  ( -u B  <  0  \/  -u B  =  0 ) ) )
99 df-ne 2640 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -u B  =/=  0  <->  -.  -u B  =  0 )
100 biorf 405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  -u B  =  0  ->  ( -u B  <  0  <->  ( -u B  =  0  \/  -u B  <  0 ) ) )
10199, 100sylbi 195 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u B  =/=  0  ->  ( -u B  <  0  <->  ( -u B  =  0  \/  -u B  <  0
) ) )
102 orcom 387 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u B  =  0  \/  -u B  <  0
)  <->  ( -u B  <  0  \/  -u B  =  0 ) )
103101, 102syl6rbb 262 . . . . . . . . . . . . . . . . . . 19  |-  ( -u B  =/=  0  ->  (
( -u B  <  0  \/  -u B  =  0 )  <->  -u B  <  0
) )
10498, 103sylan9bb 699 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  -u B  =/=  0 )  ->  (
0  <_  B  <->  -u B  <  0 ) )
10594, 104syldan 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  (
0  <_  B  <->  -u B  <  0 ) )
106 ltnle 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  ( -u B  <  0  <->  -.  0  <_  -u B ) )
10715, 8, 106sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  <  0  <->  -.  0  <_  -u B ) )
108107adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( -u B  <  0  <->  -.  0  <_  -u B ) )
109105, 108bitrd 253 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  (
0  <_  B  <->  -.  0  <_ 
-u B ) )
11074, 70addcomd 9785 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  +  B )  =  ( B  +  -u B ) )
11170negidd 9926 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  -u B )  =  0 )
112110, 111eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  +  B )  =  0 )
113112adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( -u B  +  B )  =  0 )
11474addid1d 9783 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  +  0 )  =  -u B )
115114adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( -u B  +  0 )  =  -u B )
116109, 113, 115ifbieq12d 3953 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  if ( 0  <_  B ,  ( -u B  +  B ) ,  (
-u B  +  0 ) )  =  if ( -.  0  <_  -u B ,  0 , 
-u B ) )
117 ifnot 3971 . . . . . . . . . . . . . . 15  |-  if ( -.  0  <_  -u B ,  0 ,  -u B )  =  if ( 0  <_  -u B ,  -u B ,  0 )
118116, 117syl6eq 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  if ( 0  <_  B ,  ( -u B  +  B ) ,  (
-u B  +  0 ) )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
11992, 118syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
12091, 119pm2.61dane 2761 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
121 negeq 9817 . . . . . . . . . . . . . . . 16  |-  ( C  =  0  ->  -u C  =  -u 0 )
122121, 78syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( C  =  0  ->  -u C  =  0 )
12380, 122syl5breqr 4473 . . . . . . . . . . . . . . . 16  |-  ( C  =  0  ->  0  <_ 
-u C )
124123iftrued 3934 . . . . . . . . . . . . . . 15  |-  ( C  =  0  ->  if ( 0  <_  -u C ,  -u C ,  0 )  =  -u C
)
125 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  =  0  ->  C  =  0 )
12680, 125syl5breqr 4473 . . . . . . . . . . . . . . . . . . 19  |-  ( C  =  0  ->  0  <_  C )
127126iftrued 3934 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  0  ->  if ( 0  <_  C ,  C ,  0 )  =  C )
128127, 125eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( C  =  0  ->  if ( 0  <_  C ,  C ,  0 )  =  0 )
129122, 128oveq12d 6299 . . . . . . . . . . . . . . . 16  |-  ( C  =  0  ->  ( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( 0  +  0 ) )
130129, 88syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( C  =  0  ->  ( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  0 )
131122, 124, 1303eqtr4rd 2495 . . . . . . . . . . . . . 14  |-  ( C  =  0  ->  ( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
132131adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =  0 )  -> 
( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
133 ovif2 6365 . . . . . . . . . . . . . 14  |-  ( -u C  +  if (
0  <_  C ,  C ,  0 ) )  =  if ( 0  <_  C , 
( -u C  +  C
) ,  ( -u C  +  0 ) )
13471negne0bd 9929 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( C  =/=  0  <->  -u C  =/=  0 ) )
135134biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  -u C  =/=  0 )
1364le0neg2d 10131 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  C  <->  -u C  <_ 
0 ) )
137 leloe 9674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  ( -u C  <_  0  <->  ( -u C  <  0  \/  -u C  =  0 ) ) )
13819, 8, 137sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  <_  0  <->  ( -u C  <  0  \/  -u C  =  0 ) ) )
139136, 138bitrd 253 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  C  <->  ( -u C  <  0  \/  -u C  =  0 ) ) )
140 df-ne 2640 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -u C  =/=  0  <->  -.  -u C  =  0 )
141 biorf 405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  -u C  =  0  ->  ( -u C  <  0  <->  ( -u C  =  0  \/  -u C  <  0 ) ) )
142140, 141sylbi 195 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u C  =/=  0  ->  ( -u C  <  0  <->  ( -u C  =  0  \/  -u C  <  0
) ) )
143 orcom 387 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u C  =  0  \/  -u C  <  0
)  <->  ( -u C  <  0  \/  -u C  =  0 ) )
144142, 143syl6rbb 262 . . . . . . . . . . . . . . . . . . 19  |-  ( -u C  =/=  0  ->  (
( -u C  <  0  \/  -u C  =  0 )  <->  -u C  <  0
) )
145139, 144sylan9bb 699 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  -u C  =/=  0 )  ->  (
0  <_  C  <->  -u C  <  0 ) )
146135, 145syldan 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  (
0  <_  C  <->  -u C  <  0 ) )
147 ltnle 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  ( -u C  <  0  <->  -.  0  <_  -u C ) )
14819, 8, 147sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  <  0  <->  -.  0  <_  -u C ) )
149148adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( -u C  <  0  <->  -.  0  <_  -u C ) )
150146, 149bitrd 253 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  (
0  <_  C  <->  -.  0  <_ 
-u C ) )
15175, 71addcomd 9785 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  +  C )  =  ( C  +  -u C ) )
15271negidd 9926 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( C  +  -u C )  =  0 )
153151, 152eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  +  C )  =  0 )
154153adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( -u C  +  C )  =  0 )
15575addid1d 9783 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  +  0 )  =  -u C )
156155adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( -u C  +  0 )  =  -u C )
157150, 154, 156ifbieq12d 3953 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  if ( 0  <_  C ,  ( -u C  +  C ) ,  (
-u C  +  0 ) )  =  if ( -.  0  <_  -u C ,  0 , 
-u C ) )
158 ifnot 3971 . . . . . . . . . . . . . . 15  |-  if ( -.  0  <_  -u C ,  0 ,  -u C )  =  if ( 0  <_  -u C ,  -u C ,  0 )
159157, 158syl6eq 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  if ( 0  <_  C ,  ( -u C  +  C ) ,  (
-u C  +  0 ) )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
160133, 159syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
161132, 160pm2.61dane 2761 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( -u C  +  if ( 0  <_  C ,  C ,  0 ) )  =  if ( 0  <_  -u C ,  -u C ,  0 ) )
162120, 161oveq12d 6299 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( -u B  +  if ( 0  <_  B ,  B ,  0 ) )  +  ( -u C  +  if (
0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
16373, 76, 1623eqtrd 2488 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( B  +  C
)  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
164163mpteq2dva 4523 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( B  +  C )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )  =  ( x  e.  A  |->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
1651, 56mbfneg 21930 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |-> 
-u B )  e. MblFn
)
1664, 58mbfneg 21930 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |-> 
-u C )  e. MblFn
)
16772mpteq2dva 4523 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( B  +  C ) )  =  ( x  e.  A  |->  ( -u B  +  -u C ) ) )
168167, 69eqeltrrd 2532 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( -u B  +  -u C ) )  e. MblFn
)
169165, 15, 166, 19, 168mbfposadd 30037 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  e. MblFn )
170164, 169eqeltrd 2531 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( B  +  C )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )  e. MblFn )
17169, 28, 59, 32, 170mbfposadd 30037 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  if ( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e. MblFn )
17268, 171eqeltrrd 2532 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )  e. MblFn )
173 max1 11395 . . . . . . 7  |-  ( ( 0  e.  RR  /\  -u ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 ) )
1748, 28, 173sylancr 663 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )
17530, 48, 32, 60, 172, 30, 32, 174, 65itgaddnclem1 30048 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x ) )
17647simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )  e.  L^1 )
17750simprd 463 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )
17853simprd 463 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 )
17917, 177, 21, 178, 169ibladdnc 30047 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  e.  L^1 )
180 max1 11395 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
1818, 15, 180sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
182 max1 11395 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u C  e.  RR )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
1838, 19, 182sylancr 663 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
18417, 21, 181, 183addge0d 10134 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
185184iftrued 3934 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
186185oveq2d 6297 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  if ( 0  <_  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  0 ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
187186mpteq2dva 4523 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  if ( 0  <_ 
( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  0 ) ) )  =  ( x  e.  A  |->  ( if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) ) )
18870, 71, 18, 22add4d 9808 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( B  +  C
)  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( ( B  +  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( C  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
18982, 79eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( B  =  0  ->  if ( 0  <_  -u B ,  -u B ,  0 )  =  0 )
19083, 189oveq12d 6299 . . . . . . . . . . . . . . . 16  |-  ( B  =  0  ->  ( B  +  if (
0  <_  -u B ,  -u B ,  0 ) )  =  ( 0  +  0 ) )
191190, 88syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( B  =  0  ->  ( B  +  if (
0  <_  -u B ,  -u B ,  0 ) )  =  0 )
19283, 85, 1913eqtr4rd 2495 . . . . . . . . . . . . . 14  |-  ( B  =  0  ->  ( B  +  if (
0  <_  -u B ,  -u B ,  0 ) )  =  if ( 0  <_  B ,  B ,  0 ) )
193192adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =  0 )  -> 
( B  +  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  if ( 0  <_  B ,  B ,  0 ) )
194 ovif2 6365 . . . . . . . . . . . . . 14  |-  ( B  +  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  if ( 0  <_  -u B , 
( B  +  -u B ) ,  ( B  +  0 ) )
1951le0neg1d 10130 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( B  <_  0  <->  0  <_  -u B ) )
196 leloe 9674 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B  <_  0  <->  ( B  <  0  \/  B  =  0 ) ) )
1971, 8, 196sylancl 662 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( B  <_  0  <->  ( B  <  0  \/  B  =  0 ) ) )
198195, 197bitr3d 255 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  -u B  <->  ( B  <  0  \/  B  =  0 ) ) )
199 df-ne 2640 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =/=  0  <->  -.  B  =  0 )
200 biorf 405 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  B  =  0  -> 
( B  <  0  <->  ( B  =  0  \/  B  <  0 ) ) )
201199, 200sylbi 195 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =/=  0  ->  ( B  <  0  <->  ( B  =  0  \/  B  <  0 ) ) )
202 orcom 387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  =  0  \/  B  <  0 )  <-> 
( B  <  0  \/  B  =  0
) )
203201, 202syl6rbb 262 . . . . . . . . . . . . . . . . . 18  |-  ( B  =/=  0  ->  (
( B  <  0  \/  B  =  0
)  <->  B  <  0
) )
204198, 203sylan9bb 699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  (
0  <_  -u B  <->  B  <  0 ) )
205 ltnle 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B  <  0  <->  -.  0  <_  B )
)
2061, 8, 205sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( B  <  0  <->  -.  0  <_  B ) )
207206adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( B  <  0  <->  -.  0  <_  B ) )
208204, 207bitrd 253 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  (
0  <_  -u B  <->  -.  0  <_  B ) )
209111adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( B  +  -u B )  =  0 )
21070addid1d 9783 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  0 )  =  B )
211210adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( B  +  0 )  =  B )
212208, 209, 211ifbieq12d 3953 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  if ( 0  <_  -u B ,  ( B  +  -u B ) ,  ( B  +  0 ) )  =  if ( -.  0  <_  B ,  0 ,  B
) )
213 ifnot 3971 . . . . . . . . . . . . . . 15  |-  if ( -.  0  <_  B ,  0 ,  B
)  =  if ( 0  <_  B ,  B ,  0 )
214212, 213syl6eq 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  if ( 0  <_  -u B ,  ( B  +  -u B ) ,  ( B  +  0 ) )  =  if ( 0  <_  B ,  B ,  0 ) )
215194, 214syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  B  =/=  0 )  ->  ( B  +  if (
0  <_  -u B ,  -u B ,  0 ) )  =  if ( 0  <_  B ,  B ,  0 ) )
216193, 215pm2.61dane 2761 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  if (
0  <_  -u B ,  -u B ,  0 ) )  =  if ( 0  <_  B ,  B ,  0 ) )
217124, 122eqtrd 2484 . . . . . . . . . . . . . . . . 17  |-  ( C  =  0  ->  if ( 0  <_  -u C ,  -u C ,  0 )  =  0 )
218125, 217oveq12d 6299 . . . . . . . . . . . . . . . 16  |-  ( C  =  0  ->  ( C  +  if (
0  <_  -u C ,  -u C ,  0 ) )  =  ( 0  +  0 ) )
219218, 88syl6eq 2500 . . . . . . . . . . . . . . 15  |-  ( C  =  0  ->  ( C  +  if (
0  <_  -u C ,  -u C ,  0 ) )  =  0 )
220125, 127, 2193eqtr4rd 2495 . . . . . . . . . . . . . 14  |-  ( C  =  0  ->  ( C  +  if (
0  <_  -u C ,  -u C ,  0 ) )  =  if ( 0  <_  C ,  C ,  0 ) )
221220adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =  0 )  -> 
( C  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  if ( 0  <_  C ,  C ,  0 ) )
222 ovif2 6365 . . . . . . . . . . . . . 14  |-  ( C  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  if ( 0  <_  -u C , 
( C  +  -u C ) ,  ( C  +  0 ) )
2234le0neg1d 10130 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( C  <_  0  <->  0  <_  -u C ) )
224 leloe 9674 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C  <_  0  <->  ( C  <  0  \/  C  =  0 ) ) )
2254, 8, 224sylancl 662 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( C  <_  0  <->  ( C  <  0  \/  C  =  0 ) ) )
226223, 225bitr3d 255 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  -u C  <->  ( C  <  0  \/  C  =  0 ) ) )
227 df-ne 2640 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  =/=  0  <->  -.  C  =  0 )
228 biorf 405 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  C  =  0  -> 
( C  <  0  <->  ( C  =  0  \/  C  <  0 ) ) )
229227, 228sylbi 195 . . . . . . . . . . . . . . . . . . 19  |-  ( C  =/=  0  ->  ( C  <  0  <->  ( C  =  0  \/  C  <  0 ) ) )
230 orcom 387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  =  0  \/  C  <  0 )  <-> 
( C  <  0  \/  C  =  0
) )
231229, 230syl6rbb 262 . . . . . . . . . . . . . . . . . 18  |-  ( C  =/=  0  ->  (
( C  <  0  \/  C  =  0
)  <->  C  <  0
) )
232226, 231sylan9bb 699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  (
0  <_  -u C  <->  C  <  0 ) )
233 ltnle 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C  <  0  <->  -.  0  <_  C )
)
2344, 8, 233sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( C  <  0  <->  -.  0  <_  C ) )
235234adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( C  <  0  <->  -.  0  <_  C ) )
236232, 235bitrd 253 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  (
0  <_  -u C  <->  -.  0  <_  C ) )
237152adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( C  +  -u C )  =  0 )
23871addid1d 9783 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( C  +  0 )  =  C )
239238adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( C  +  0 )  =  C )
240236, 237, 239ifbieq12d 3953 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  if ( 0  <_  -u C ,  ( C  +  -u C ) ,  ( C  +  0 ) )  =  if ( -.  0  <_  C ,  0 ,  C
) )
241 ifnot 3971 . . . . . . . . . . . . . . 15  |-  if ( -.  0  <_  C ,  0 ,  C
)  =  if ( 0  <_  C ,  C ,  0 )
242240, 241syl6eq 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  if ( 0  <_  -u C ,  ( C  +  -u C ) ,  ( C  +  0 ) )  =  if ( 0  <_  C ,  C ,  0 ) )
243222, 242syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  C  =/=  0 )  ->  ( C  +  if (
0  <_  -u C ,  -u C ,  0 ) )  =  if ( 0  <_  C ,  C ,  0 ) )
244221, 243pm2.61dane 2761 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( C  +  if (
0  <_  -u C ,  -u C ,  0 ) )  =  if ( 0  <_  C ,  C ,  0 ) )
245216, 244oveq12d 6299 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( B  +  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( C  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
246188, 245eqtrd 2484 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( B  +  C
)  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
247246mpteq2dva 4523 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( ( B  +  C )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )  =  ( x  e.  A  |->  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
248247, 59eqeltrd 2531 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( B  +  C )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )  e. MblFn )
24944, 24, 169, 37, 248mbfposadd 30037 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  if ( 0  <_ 
( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ,  0 ) ) )  e. MblFn )
250187, 249eqeltrrd 2532 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )  e. MblFn
)
251 max1 11395 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )
2528, 24, 251sylancr 663 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )
25335, 176, 37, 179, 250, 35, 37, 252, 184itgaddnclem1 30048 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
25441, 175, 2533eqtr3d 2492 . . . 4  |-  ( ph  ->  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
25530, 48itgcl 22063 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 )  _d x  e.  CC )
25610, 51, 13, 54, 59, 10, 13, 62, 64itgaddnclem1 30048 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x ) )
25710, 51itgcl 22063 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  e.  CC )
25813, 54itgcl 22063 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  C ,  C ,  0 )  _d x  e.  CC )
259257, 258addcld 9618 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  e.  CC )
260256, 259eqeltrd 2531 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  e.  CC )
26135, 176itgcl 22063 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  e.  CC )
26217, 177, 21, 178, 169, 17, 21, 181, 183itgaddnclem1 30048 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
26317, 177itgcl 22063 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  e.  CC )
26421, 178itgcl 22063 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x  e.  CC )
265263, 264addcld 9618 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x )  e.  CC )
266262, 265eqeltrd 2531 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  e.  CC )
267255, 260, 261, 266addsubeq4d 9987 . . . 4  |-  ( ph  ->  ( ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  <-> 
( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) ) )
268254, 267mpbid 210 . . 3  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
269256, 262oveq12d 6299 . . 3  |-  ( ph  ->  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C ,  0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
270257, 258, 263, 264addsub4d 9983 . . 3  |-  ( ph  ->  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
271268, 269, 2703eqtrd 2488 . 2  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
27224, 45itgreval 22076 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x ) )
2731, 42itgreval 22076 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
2744, 43itgreval 22076 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
275273, 274oveq12d 6299 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
276271, 272, 2753eqtr4d 2494 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   ifcif 3926   class class class wbr 4437    |-> cmpt 4495  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   -ucneg 9811  MblFncmbf 21896   L^1cibl 21899   S.citg 21900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-n0 10802  df-z 10871  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-sum 13488  df-rest 14697  df-topgen 14718  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-top 19272  df-bases 19274  df-topon 19275  df-cmp 19760  df-ovol 21749  df-vol 21750  df-mbf 21901  df-itg1 21902  df-itg2 21903  df-ibl 21904  df-itg 21905  df-0p 21950
This theorem is referenced by:  itgaddnc  30050
  Copyright terms: Public domain W3C validator