Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnclem1 Structured version   Unicode version

Theorem itgaddnclem1 30000
Description: Lemma for itgaddnc 30002; cf. itgaddlem1 22097. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
ibladdnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
ibladdnc.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
ibladdnc.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
ibladdnc.m  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
itgaddnclem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgaddnclem.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
itgaddnclem.3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
itgaddnclem.4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  C )
Assertion
Ref Expression
itgaddnclem1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddnclem1
StepHypRef Expression
1 itgaddnclem.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgaddnclem.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
31, 2readdcld 9635 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
4 ibladdnc.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
5 ibladdnc.2 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
6 ibladdnc.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
7 ibladdnc.4 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
8 ibladdnc.m . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
94, 5, 6, 7, 8ibladdnc 29999 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
10 itgaddnclem.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
11 itgaddnclem.4 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  C )
121, 2, 10, 11addge0d 10140 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( B  +  C
) )
133, 9, 12itgposval 22070 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( B  +  C ) ,  0 ) ) ) )
141, 5, 10itgposval 22070 . . . 4  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
152, 7, 11itgposval 22070 . . . 4  |-  ( ph  ->  S. A C  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) ) )
1614, 15oveq12d 6313 . . 3  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) ) ) )
17 iblmbf 22042 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
185, 17syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
1918, 4mbfdm2 21913 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
20 mblss 21810 . . . . . 6  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
2119, 20syl 16 . . . . 5  |-  ( ph  ->  A  C_  RR )
22 rembl 21819 . . . . . 6  |-  RR  e.  dom  vol
2322a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  dom  vol )
24 elrege0 11639 . . . . . . . 8  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
251, 10, 24sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( 0 [,) +oo ) )
26 0e0icopnf 11642 . . . . . . . 8  |-  0  e.  ( 0 [,) +oo )
2726a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
2825, 27ifclda 3977 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  B , 
0 )  e.  ( 0 [,) +oo )
)
2928adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) +oo ) )
30 eldifn 3632 . . . . . . 7  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
3130adantl 466 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
32 iffalse 3954 . . . . . 6  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  B ,  0 )  =  0 )
3331, 32syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A ,  B ,  0 )  =  0 )
34 iftrue 3951 . . . . . . 7  |-  ( x  e.  A  ->  if ( x  e.  A ,  B ,  0 )  =  B )
3534mpteq2ia 4535 . . . . . 6  |-  ( x  e.  A  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  A  |->  B )
3635, 18syl5eqel 2559 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  B , 
0 ) )  e. MblFn
)
3721, 23, 29, 33, 36mbfss 21921 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  e. MblFn )
3828adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) +oo ) )
39 eqid 2467 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
4038, 39fmptd 6056 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,) +oo ) )
411, 10iblpos 22067 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
425, 41mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
4342simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
44 elrege0 11639 . . . . . . . 8  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
452, 11, 44sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  ( 0 [,) +oo ) )
4645, 27ifclda 3977 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  C , 
0 )  e.  ( 0 [,) +oo )
)
4746adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  C ,  0 )  e.  ( 0 [,) +oo ) )
48 eqid 2467 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
4947, 48fmptd 6056 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) : RR --> ( 0 [,) +oo ) )
502, 11iblpos 22067 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  C )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )  e.  RR ) ) )
517, 50mpbid 210 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )  e.  RR ) )
5251simprd 463 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )  e.  RR )
5337, 40, 43, 49, 52itg2addnc 29996 . . 3  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) ) ) )
54 reex 9595 . . . . . . 7  |-  RR  e.  _V
5554a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  _V )
56 eqidd 2468 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
57 eqidd 2468 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )
5855, 38, 47, 56, 57offval2 6551 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  B , 
0 )  +  if ( x  e.  A ,  C ,  0 ) ) ) )
59 iftrue 3951 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  C )
6034, 59oveq12d 6313 . . . . . . . 8  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C ,  0 ) )  =  ( B  +  C ) )
61 iftrue 3951 . . . . . . . 8  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( B  +  C ) ,  0 )  =  ( B  +  C ) )
6260, 61eqtr4d 2511 . . . . . . 7  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C ,  0 ) )  =  if ( x  e.  A ,  ( B  +  C ) ,  0 ) )
63 iffalse 3954 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  0 )
6432, 63oveq12d 6313 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C , 
0 ) )  =  ( 0  +  0 ) )
65 00id 9766 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
6664, 65syl6eq 2524 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C , 
0 ) )  =  0 )
67 iffalse 3954 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( B  +  C ) ,  0 )  =  0 )
6866, 67eqtr4d 2511 . . . . . . 7  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C , 
0 ) )  =  if ( x  e.  A ,  ( B  +  C ) ,  0 ) )
6962, 68pm2.61i 164 . . . . . 6  |-  ( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C ,  0 ) )  =  if ( x  e.  A ,  ( B  +  C ) ,  0 )
7069mpteq2i 4536 . . . . 5  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  B ,  0 )  +  if ( x  e.  A ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( B  +  C
) ,  0 ) )
7158, 70syl6eq 2524 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( B  +  C ) ,  0 ) ) )
7271fveq2d 5876 . . 3  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( B  +  C ) ,  0 ) ) ) )
7316, 53, 723eqtr2d 2514 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( B  +  C ) ,  0 ) ) ) )
7413, 73eqtr4d 2511 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118    \ cdif 3478    C_ wss 3481   ifcif 3945   class class class wbr 4453    |-> cmpt 4511   dom cdm 5005   ` cfv 5594  (class class class)co 6295    oFcof 6533   RRcr 9503   0cc0 9504    + caddc 9507   +oocpnf 9637    <_ cle 9641   [,)cico 11543   volcvol 21743  MblFncmbf 21891   S.2citg2 21893   L^1cibl 21894   S.citg 21895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-ofr 6536  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-sum 13489  df-rest 14695  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-cmp 19755  df-ovol 21744  df-vol 21745  df-mbf 21896  df-itg1 21897  df-itg2 21898  df-ibl 21899  df-itg 21900  df-0p 21945
This theorem is referenced by:  itgaddnclem2  30001
  Copyright terms: Public domain W3C validator