Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Unicode version

Theorem itgaddnc 31412
Description: Choice-free analogue of itgadd 22413. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
ibladdnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
ibladdnc.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
ibladdnc.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
ibladdnc.m  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
Assertion
Ref Expression
itgaddnc  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddnc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 22356 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 ibladdnc.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 22226 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 ibladdnc.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
7 iblmbf 22356 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
86, 7syl 17 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
9 ibladdnc.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
108, 9mbfmptcl 22226 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
115, 10readdd 13101 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  +  C ) )  =  ( ( Re `  B )  +  ( Re `  C ) ) )
1211itgeq2dv 22370 . . . . 5  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  S. A
( ( Re `  B )  +  ( Re `  C ) )  _d x )
135recld 13081 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
145iblcn 22387 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
151, 14mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
1615simpld 457 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
1710recld 13081 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
1810iblcn 22387 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  C ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  C ) )  e.  L^1 ) ) )
196, 18mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  C ) )  e.  L^1 ) )
2019simpld 457 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e.  L^1 )
215, 10addcld 9563 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  CC )
22 eqidd 2401 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  =  ( x  e.  A  |->  ( B  +  C ) ) )
23 ref 12999 . . . . . . . . . . 11  |-  Re : CC
--> RR
2423a1i 11 . . . . . . . . . 10  |-  ( ph  ->  Re : CC --> RR )
2524feqmptd 5856 . . . . . . . . 9  |-  ( ph  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
26 fveq2 5803 . . . . . . . . 9  |-  ( y  =  ( B  +  C )  ->  (
Re `  y )  =  ( Re `  ( B  +  C
) ) )
2721, 22, 25, 26fmptco 5997 . . . . . . . 8  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( Re `  ( B  +  C ) ) ) )
2811mpteq2dva 4478 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( B  +  C )
) )  =  ( x  e.  A  |->  ( ( Re `  B
)  +  ( Re
`  C ) ) ) )
2927, 28eqtrd 2441 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( ( Re `  B
)  +  ( Re
`  C ) ) ) )
30 ibladdnc.m . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
31 eqid 2400 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( B  +  C ) )  =  ( x  e.  A  |->  ( B  +  C ) )
3221, 31fmptd 5987 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) ) : A --> CC )
33 ismbfcn 22220 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( B  +  C ) ) : A --> CC  ->  ( ( x  e.  A  |->  ( B  +  C
) )  e. MblFn  <->  ( (
Re  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn ) ) )
3432, 33syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e. MblFn  <->  ( ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn ) ) )
3530, 34mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( Re  o.  ( x  e.  A  |->  ( B  +  C
) ) )  e. MblFn  /\  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
)
3635simpld 457 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
3729, 36eqeltrrd 2489 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  B )  +  ( Re `  C ) ) )  e. MblFn )
3813, 16, 17, 20, 37, 13, 17itgaddnclem2 31411 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  B )  +  ( Re `  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
3912, 38eqtrd 2441 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
405, 10imaddd 13102 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  +  C ) )  =  ( ( Im `  B )  +  ( Im `  C ) ) )
4140itgeq2dv 22370 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  S. A
( ( Im `  B )  +  ( Im `  C ) )  _d x )
425imcld 13082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
4315simprd 461 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
4410imcld 13082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
4519simprd 461 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e.  L^1 )
46 imf 13000 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
4746a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  Im : CC --> RR )
4847feqmptd 5856 . . . . . . . . . . 11  |-  ( ph  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
49 fveq2 5803 . . . . . . . . . . 11  |-  ( y  =  ( B  +  C )  ->  (
Im `  y )  =  ( Im `  ( B  +  C
) ) )
5021, 22, 48, 49fmptco 5997 . . . . . . . . . 10  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( Im `  ( B  +  C ) ) ) )
5140mpteq2dva 4478 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( B  +  C )
) )  =  ( x  e.  A  |->  ( ( Im `  B
)  +  ( Im
`  C ) ) ) )
5250, 51eqtrd 2441 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( ( Im `  B
)  +  ( Im
`  C ) ) ) )
5335simprd 461 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
5452, 53eqeltrrd 2489 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  B )  +  ( Im `  C ) ) )  e. MblFn )
5542, 43, 44, 45, 54, 42, 44itgaddnclem2 31411 . . . . . . 7  |-  ( ph  ->  S. A ( ( Im `  B )  +  ( Im `  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
5641, 55eqtrd 2441 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
5756oveq2d 6248 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( _i  x.  ( S. A
( Im `  B
)  _d x  +  S. A ( Im `  C )  _d x ) ) )
58 ax-icn 9499 . . . . . . 7  |-  _i  e.  CC
5958a1i 11 . . . . . 6  |-  ( ph  ->  _i  e.  CC )
6042, 43itgcl 22372 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
6144, 45itgcl 22372 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  C )  _d x  e.  CC )
6259, 60, 61adddid 9568 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )  =  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
6357, 62eqtrd 2441 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
6439, 63oveq12d 6250 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  S. A
( Re `  C
)  _d x )  +  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
6513, 16itgcl 22372 . . . 4  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
6617, 20itgcl 22372 . . . 4  |-  ( ph  ->  S. A ( Re
`  C )  _d x  e.  CC )
67 mulcl 9524 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
6858, 60, 67sylancr 661 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
69 mulcl 9524 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  C )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
7058, 61, 69sylancr 661 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
7165, 66, 68, 70add4d 9757 . . 3  |-  ( ph  ->  ( ( S. A
( Re `  B
)  _d x  +  S. A ( Re `  C )  _d x )  +  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )  =  ( ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A ( Re
`  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
7264, 71eqtrd 2441 . 2  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
73 ovex 6260 . . . 4  |-  ( B  +  C )  e. 
_V
7473a1i 11 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  _V )
754, 1, 9, 6, 30ibladdnc 31409 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
7674, 75itgcnval 22388 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A ( Re `  ( B  +  C
) )  _d x  +  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x ) ) )
774, 1itgcnval 22388 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
789, 6itgcnval 22388 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A ( Re `  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
7977, 78oveq12d 6250 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
8072, 76, 793eqtr4d 2451 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1403    e. wcel 1840   _Vcvv 3056    |-> cmpt 4450    o. ccom 4944   -->wf 5519   ` cfv 5523  (class class class)co 6232   CCcc 9438   RRcr 9439   _ici 9442    + caddc 9443    x. cmul 9445   Recre 12984   Imcim 12985  MblFncmbf 22205   L^1cibl 22208   S.citg 22209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-inf2 8009  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518  ax-addf 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-fal 1409  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-disj 4364  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-isom 5532  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-ofr 6476  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-1o 7085  df-2o 7086  df-oadd 7089  df-er 7266  df-map 7377  df-pm 7378  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-fi 7823  df-sup 7853  df-oi 7887  df-card 8270  df-cda 8498  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-4 10555  df-n0 10755  df-z 10824  df-uz 11044  df-q 11144  df-rp 11182  df-xneg 11287  df-xadd 11288  df-xmul 11289  df-ioo 11502  df-ico 11504  df-icc 11505  df-fz 11642  df-fzo 11766  df-fl 11877  df-mod 11946  df-seq 12060  df-exp 12119  df-hash 12358  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123  df-clim 13365  df-sum 13563  df-rest 14927  df-topgen 14948  df-psmet 18621  df-xmet 18622  df-met 18623  df-bl 18624  df-mopn 18625  df-top 19581  df-bases 19583  df-topon 19584  df-cmp 20070  df-ovol 22058  df-vol 22059  df-mbf 22210  df-itg1 22211  df-itg2 22212  df-ibl 22213  df-itg 22214  df-0p 22259
This theorem is referenced by:  itgsubnc  31414  itgmulc2nc  31420  ftc1cnnclem  31425
  Copyright terms: Public domain W3C validator