Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Unicode version

Theorem itgaddnc 30051
Description: Choice-free analogue of itgadd 22209. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
ibladdnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
ibladdnc.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
ibladdnc.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
ibladdnc.m  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
Assertion
Ref Expression
itgaddnc  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddnc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 22152 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 ibladdnc.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 22022 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 ibladdnc.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
7 iblmbf 22152 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
86, 7syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
9 ibladdnc.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
108, 9mbfmptcl 22022 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
115, 10readdd 13029 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  +  C ) )  =  ( ( Re `  B )  +  ( Re `  C ) ) )
1211itgeq2dv 22166 . . . . 5  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  S. A
( ( Re `  B )  +  ( Re `  C ) )  _d x )
135recld 13009 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
145iblcn 22183 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
151, 14mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
1615simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
1710recld 13009 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
1810iblcn 22183 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  C ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  C ) )  e.  L^1 ) ) )
196, 18mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  C ) )  e.  L^1 ) )
2019simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e.  L^1 )
215, 10addcld 9618 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  CC )
22 eqidd 2444 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  =  ( x  e.  A  |->  ( B  +  C ) ) )
23 ref 12927 . . . . . . . . . . 11  |-  Re : CC
--> RR
2423a1i 11 . . . . . . . . . 10  |-  ( ph  ->  Re : CC --> RR )
2524feqmptd 5911 . . . . . . . . 9  |-  ( ph  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
26 fveq2 5856 . . . . . . . . 9  |-  ( y  =  ( B  +  C )  ->  (
Re `  y )  =  ( Re `  ( B  +  C
) ) )
2721, 22, 25, 26fmptco 6049 . . . . . . . 8  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( Re `  ( B  +  C ) ) ) )
2811mpteq2dva 4523 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( B  +  C )
) )  =  ( x  e.  A  |->  ( ( Re `  B
)  +  ( Re
`  C ) ) ) )
2927, 28eqtrd 2484 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( ( Re `  B
)  +  ( Re
`  C ) ) ) )
30 ibladdnc.m . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e. MblFn )
31 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( B  +  C ) )  =  ( x  e.  A  |->  ( B  +  C ) )
3221, 31fmptd 6040 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) ) : A --> CC )
33 ismbfcn 22016 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( B  +  C ) ) : A --> CC  ->  ( ( x  e.  A  |->  ( B  +  C
) )  e. MblFn  <->  ( (
Re  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn ) ) )
3432, 33syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e. MblFn  <->  ( ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( B  +  C ) ) )  e. MblFn ) ) )
3530, 34mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( Re  o.  ( x  e.  A  |->  ( B  +  C
) ) )  e. MblFn  /\  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
)
3635simpld 459 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
3729, 36eqeltrrd 2532 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  B )  +  ( Re `  C ) ) )  e. MblFn )
3813, 16, 17, 20, 37, 13, 17itgaddnclem2 30050 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  B )  +  ( Re `  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
3912, 38eqtrd 2484 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( B  +  C ) )  _d x  =  ( S. A ( Re `  B )  _d x  +  S. A ( Re `  C )  _d x ) )
405, 10imaddd 13030 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  +  C ) )  =  ( ( Im `  B )  +  ( Im `  C ) ) )
4140itgeq2dv 22166 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  S. A
( ( Im `  B )  +  ( Im `  C ) )  _d x )
425imcld 13010 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
4315simprd 463 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
4410imcld 13010 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
4519simprd 463 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e.  L^1 )
46 imf 12928 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
4746a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  Im : CC --> RR )
4847feqmptd 5911 . . . . . . . . . . 11  |-  ( ph  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
49 fveq2 5856 . . . . . . . . . . 11  |-  ( y  =  ( B  +  C )  ->  (
Im `  y )  =  ( Im `  ( B  +  C
) ) )
5021, 22, 48, 49fmptco 6049 . . . . . . . . . 10  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( Im `  ( B  +  C ) ) ) )
5140mpteq2dva 4523 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( B  +  C )
) )  =  ( x  e.  A  |->  ( ( Im `  B
)  +  ( Im
`  C ) ) ) )
5250, 51eqtrd 2484 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  =  ( x  e.  A  |->  ( ( Im `  B
)  +  ( Im
`  C ) ) ) )
5335simprd 463 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( B  +  C ) ) )  e. MblFn )
5452, 53eqeltrrd 2532 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  B )  +  ( Im `  C ) ) )  e. MblFn )
5542, 43, 44, 45, 54, 42, 44itgaddnclem2 30050 . . . . . . 7  |-  ( ph  ->  S. A ( ( Im `  B )  +  ( Im `  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
5641, 55eqtrd 2484 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( B  +  C ) )  _d x  =  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )
5756oveq2d 6297 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( _i  x.  ( S. A
( Im `  B
)  _d x  +  S. A ( Im `  C )  _d x ) ) )
58 ax-icn 9554 . . . . . . 7  |-  _i  e.  CC
5958a1i 11 . . . . . 6  |-  ( ph  ->  _i  e.  CC )
6042, 43itgcl 22168 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
6144, 45itgcl 22168 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  C )  _d x  e.  CC )
6259, 60, 61adddid 9623 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( Im `  B )  _d x  +  S. A ( Im `  C )  _d x ) )  =  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
6357, 62eqtrd 2484 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x )  =  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
6439, 63oveq12d 6299 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  S. A
( Re `  C
)  _d x )  +  ( ( _i  x.  S. A ( Im `  B )  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
6513, 16itgcl 22168 . . . 4  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
6617, 20itgcl 22168 . . . 4  |-  ( ph  ->  S. A ( Re
`  C )  _d x  e.  CC )
67 mulcl 9579 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
6858, 60, 67sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
69 mulcl 9579 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( Im `  C )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
7058, 61, 69sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  C )  _d x )  e.  CC )
7165, 66, 68, 70add4d 9808 . . 3  |-  ( ph  ->  ( ( S. A
( Re `  B
)  _d x  +  S. A ( Re `  C )  _d x )  +  ( ( _i  x.  S. A
( Im `  B
)  _d x )  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )  =  ( ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A ( Re
`  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
7264, 71eqtrd 2484 . 2  |-  ( ph  ->  ( S. A ( Re `  ( B  +  C ) )  _d x  +  ( _i  x.  S. A
( Im `  ( B  +  C )
)  _d x ) )  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
73 ovex 6309 . . . 4  |-  ( B  +  C )  e. 
_V
7473a1i 11 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  _V )
754, 1, 9, 6, 30ibladdnc 30048 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
7674, 75itgcnval 22184 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A ( Re `  ( B  +  C
) )  _d x  +  ( _i  x.  S. A ( Im `  ( B  +  C
) )  _d x ) ) )
774, 1itgcnval 22184 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
789, 6itgcnval 22184 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A ( Re `  C )  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) )
7977, 78oveq12d 6299 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A ( Re
`  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) )  +  ( S. A
( Re `  C
)  _d x  +  ( _i  x.  S. A ( Im `  C )  _d x ) ) ) )
8072, 76, 793eqtr4d 2494 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   _Vcvv 3095    |-> cmpt 4495    o. ccom 4993   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   _ici 9497    + caddc 9498    x. cmul 9500   Recre 12912   Imcim 12913  MblFncmbf 22001   L^1cibl 22004   S.citg 22005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-n0 10803  df-z 10872  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-clim 13293  df-sum 13491  df-rest 14802  df-topgen 14823  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-top 19377  df-bases 19379  df-topon 19380  df-cmp 19865  df-ovol 21854  df-vol 21855  df-mbf 22006  df-itg1 22007  df-itg2 22008  df-ibl 22009  df-itg 22010  df-0p 22055
This theorem is referenced by:  itgsubnc  30053  itgmulc2nc  30059  ftc1cnnclem  30064
  Copyright terms: Public domain W3C validator