MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem2 Structured version   Unicode version

Theorem itgaddlem2 22520
Description: Lemma for itgadd 22521. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgadd.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgadd.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
itgadd.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
itgadd.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgadd.6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
Assertion
Ref Expression
itgaddlem2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddlem2
StepHypRef Expression
1 itgadd.5 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 max0sub 11447 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
31, 2syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4 itgadd.6 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
5 max0sub 11447 . . . . . . . . . 10  |-  ( C  e.  RR  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
64, 5syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
73, 6oveq12d 6295 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( B  +  C
) )
8 0re 9625 . . . . . . . . . . 11  |-  0  e.  RR
9 ifcl 3926 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
101, 8, 9sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
1110recnd 9651 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  CC )
12 ifcl 3926 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
134, 8, 12sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
1413recnd 9651 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
151renegcld 10026 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
16 ifcl 3926 . . . . . . . . . . 11  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1715, 8, 16sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1817recnd 9651 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  CC )
194renegcld 10026 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u C  e.  RR )
20 ifcl 3926 . . . . . . . . . . 11  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2119, 8, 20sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2221recnd 9651 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
2311, 14, 18, 22addsub4d 10013 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( ( if ( 0  <_  B ,  B , 
0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
241, 4readdcld 9652 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
25 max0sub 11447 . . . . . . . . 9  |-  ( ( B  +  C )  e.  RR  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
2624, 25syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
277, 23, 263eqtr4rd 2454 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
2824renegcld 10026 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  -u ( B  +  C )  e.  RR )
29 ifcl 3926 . . . . . . . . . 10  |-  ( (
-u ( B  +  C )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  e.  RR )
3028, 8, 29sylancl 660 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  RR )
3130recnd 9651 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  CC )
3211, 14addcld 9644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  CC )
33 ifcl 3926 . . . . . . . . . 10  |-  ( ( ( B  +  C
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 )  e.  RR )
3424, 8, 33sylancl 660 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  RR )
3534recnd 9651 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  CC )
3618, 22addcld 9644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  CC )
3731, 32, 35, 36addsubeq4d 10017 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  <->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) ) )
3827, 37mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
3938itgeq2dv 22478 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x )
40 itgadd.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
41 itgadd.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
42 itgadd.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
43 itgadd.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
4440, 41, 42, 43ibladd 22517 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
4524iblre 22490 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 ) )  e.  L^1 ) ) )
4644, 45mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 ) )
4746simprd 461 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 )
4810, 13readdcld 9652 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
491iblre 22490 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
5041, 49mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) )
5150simpld 457 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L^1 )
524iblre 22490 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) ) )
5343, 52mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) )
5453simpld 457 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  C ,  C , 
0 ) )  e.  L^1 )
5510, 51, 13, 54ibladd 22517 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )  e.  L^1 )
56 max1 11438 . . . . . . 7  |-  ( ( 0  e.  RR  /\  -u ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 ) )
578, 28, 56sylancr 661 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )
58 max1 11438 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
598, 1, 58sylancr 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
60 max1 11438 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
618, 4, 60sylancr 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
6210, 13, 59, 61addge0d 10167 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
6330, 47, 48, 55, 30, 48, 57, 62itgaddlem1 22519 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x ) )
6446simpld 457 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )  e.  L^1 )
6517, 21readdcld 9652 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  RR )
6650simprd 461 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )
6753simprd 461 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 )
6817, 66, 21, 67ibladd 22517 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  e.  L^1 )
69 max1 11438 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )
708, 24, 69sylancr 661 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )
71 max1 11438 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
728, 15, 71sylancr 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
73 max1 11438 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  -u C  e.  RR )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
748, 19, 73sylancr 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
7517, 21, 72, 74addge0d 10167 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
7634, 64, 65, 68, 34, 65, 70, 75itgaddlem1 22519 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
7739, 63, 763eqtr3d 2451 . . . 4  |-  ( ph  ->  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
7830, 47itgcl 22480 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 )  _d x  e.  CC )
7910, 51, 13, 54, 10, 13, 59, 61itgaddlem1 22519 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x ) )
8010, 51itgcl 22480 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  e.  CC )
8113, 54itgcl 22480 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  C ,  C ,  0 )  _d x  e.  CC )
8280, 81addcld 9644 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  e.  CC )
8379, 82eqeltrd 2490 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  e.  CC )
8434, 64itgcl 22480 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  e.  CC )
8517, 66, 21, 67, 17, 21, 72, 74itgaddlem1 22519 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
8617, 66itgcl 22480 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  e.  CC )
8721, 67itgcl 22480 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x  e.  CC )
8886, 87addcld 9644 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x )  e.  CC )
8985, 88eqeltrd 2490 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  e.  CC )
9078, 83, 84, 89addsubeq4d 10017 . . . 4  |-  ( ph  ->  ( ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  <-> 
( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) ) )
9177, 90mpbid 210 . . 3  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
9279, 85oveq12d 6295 . . 3  |-  ( ph  ->  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C ,  0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9380, 81, 86, 87addsub4d 10013 . . 3  |-  ( ph  ->  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9491, 92, 933eqtrd 2447 . 2  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9524, 44itgreval 22493 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x ) )
961, 41itgreval 22493 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
974, 43itgreval 22493 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
9896, 97oveq12d 6295 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9994, 95, 983eqtr4d 2453 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   ifcif 3884   class class class wbr 4394    |-> cmpt 4452  (class class class)co 6277   CCcc 9519   RRcr 9520   0cc0 9521    + caddc 9524    <_ cle 9658    - cmin 9840   -ucneg 9841   L^1cibl 22316   S.citg 22317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cc 8846  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-ofr 6521  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-omul 7171  df-er 7347  df-map 7458  df-pm 7459  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-acn 8354  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-n0 10836  df-z 10905  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-rlim 13459  df-sum 13656  df-rest 15035  df-topgen 15056  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-top 19689  df-bases 19691  df-topon 19692  df-cmp 20178  df-ovol 22166  df-vol 22167  df-mbf 22318  df-itg1 22319  df-itg2 22320  df-ibl 22321  df-itg 22322  df-0p 22367
This theorem is referenced by:  itgadd  22521
  Copyright terms: Public domain W3C validator