Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgabsnc Structured version   Visualization version   Unicode version

Theorem itgabsnc 32075
Description: Choice-free analogue of itgabs 22871. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
itgabsnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgabsnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgabsnc.m1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
itgabsnc.m2  |-  ( ph  ->  ( y  e.  A  |->  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  e. MblFn )
Assertion
Ref Expression
itgabsnc  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Distinct variable groups:    x, y, A    y, B    ph, x, y   
x, V, y
Allowed substitution hint:    B( x)

Proof of Theorem itgabsnc
StepHypRef Expression
1 itgabsnc.1 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 itgabsnc.2 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
31, 2itgcl 22820 . . . . . . . . . . 11  |-  ( ph  ->  S. A B  _d x  e.  CC )
43cjcld 13336 . . . . . . . . . 10  |-  ( ph  ->  ( * `  S. A B  _d x
)  e.  CC )
5 iblmbf 22804 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
62, 5syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
76, 1mbfmptcl 22672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
87ralrimiva 2809 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
9 nfv 1769 . . . . . . . . . . . . 13  |-  F/ y  B  e.  CC
10 nfcsb1v 3365 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
1110nfel1 2626 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ B  e.  CC
12 csbeq1a 3358 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
1312eleq1d 2533 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( B  e.  CC  <->  [_ y  /  x ]_ B  e.  CC ) )
149, 11, 13cbvral 3001 . . . . . . . . . . . 12  |-  ( A. x  e.  A  B  e.  CC  <->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
158, 14sylib 201 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
1615r19.21bi 2776 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  CC )
17 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ y B
1817, 10, 12cbvmpt 4487 . . . . . . . . . . 11  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
1918, 2syl5eqelr 2554 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |-> 
[_ y  /  x ]_ B )  e.  L^1 )
20 itgabsnc.m2 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |->  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  e. MblFn )
214, 16, 19, 20iblmulc2nc 32071 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  e.  L^1 )
224adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
* `  S. A B  _d x )  e.  CC )
2322, 16mulcld 9681 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  CC )
2423iblcn 22835 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  L^1  <->  ( (
y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) ) )  e.  L^1  /\  ( y  e.  A  |->  ( Im `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 ) ) )
2521, 24mpbid 215 . . . . . . . 8  |-  ( ph  ->  ( ( y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L^1  /\  ( y  e.  A  |->  ( Im `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 ) )
2625simpld 466 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 )
2722, 16absmuld 13593 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
2827mpteq2dva 4482 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  =  ( y  e.  A  |->  ( ( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) ) ) )
296, 1mbfdm2 22673 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  dom  vol )
3022abscld 13575 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( * `  S. A B  _d x ) )  e.  RR )
3116abscld 13575 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  [_ y  /  x ]_ B )  e.  RR )
32 fconstmpt 4883 . . . . . . . . . . . 12  |-  ( A  X.  { ( abs `  ( * `  S. A B  _d x
) ) } )  =  ( y  e.  A  |->  ( abs `  (
* `  S. A B  _d x ) ) )
3332a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( A  X.  {
( abs `  (
* `  S. A B  _d x ) ) } )  =  ( y  e.  A  |->  ( abs `  ( * `
 S. A B  _d x ) ) ) )
34 nfcv 2612 . . . . . . . . . . . . 13  |-  F/_ y
( abs `  B
)
35 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ x abs
3635, 10nffv 5886 . . . . . . . . . . . . 13  |-  F/_ x
( abs `  [_ y  /  x ]_ B )
3712fveq2d 5883 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( abs `  B )  =  ( abs `  [_ y  /  x ]_ B ) )
3834, 36, 37cbvmpt 4487 . . . . . . . . . . . 12  |-  ( x  e.  A  |->  ( abs `  B ) )  =  ( y  e.  A  |->  ( abs `  [_ y  /  x ]_ B ) )
3938a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  =  ( y  e.  A  |->  ( abs `  [_ y  /  x ]_ B ) ) )
4029, 30, 31, 33, 39offval2 6567 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  X.  { ( abs `  (
* `  S. A B  _d x ) ) } )  oF  x.  ( x  e.  A  |->  ( abs `  B
) ) )  =  ( y  e.  A  |->  ( ( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) ) ) )
4128, 40eqtr4d 2508 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  =  ( ( A  X.  {
( abs `  (
* `  S. A B  _d x ) ) } )  oF  x.  ( x  e.  A  |->  ( abs `  B
) ) ) )
42 itgabsnc.m1 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
434abscld 13575 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  (
* `  S. A B  _d x ) )  e.  RR )
447abscld 13575 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
4544recnd 9687 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  CC )
46 eqid 2471 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( abs `  B ) )  =  ( x  e.  A  |->  ( abs `  B
) )
4745, 46fmptd 6061 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) ) : A --> CC )
4842, 43, 47mbfmulc2re 22683 . . . . . . . . 9  |-  ( ph  ->  ( ( A  X.  { ( abs `  (
* `  S. A B  _d x ) ) } )  oF  x.  ( x  e.  A  |->  ( abs `  B
) ) )  e. MblFn
)
4941, 48eqeltrd 2549 . . . . . . . 8  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e. MblFn )
5023, 21, 49iblabsnc 32070 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 )
5123recld 13334 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
5223abscld 13575 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
5323releabsd 13590 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  <_ 
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )
5426, 50, 51, 52, 53itgle 22846 . . . . . 6  |-  ( ph  ->  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y  <_  S. A
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
553abscld 13575 . . . . . . . . 9  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  RR )
5655recnd 9687 . . . . . . . 8  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  CC )
5756sqvald 12451 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) ) )
583absvalsqd 13581 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) ) )
593, 4mulcomd 9682 . . . . . . . . . 10  |-  ( ph  ->  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) )  =  ( ( * `
 S. A B  _d x )  x.  S. A B  _d x ) )
6012, 17, 10cbvitg 22812 . . . . . . . . . . . 12  |-  S. A B  _d x  =  S. A [_ y  /  x ]_ B  _d y
6160oveq2i 6319 . . . . . . . . . . 11  |-  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  ( ( * `  S. A B  _d x
)  x.  S. A [_ y  /  x ]_ B  _d y
)
624, 16, 19, 20itgmulc2nc 32074 . . . . . . . . . . 11  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A [_ y  /  x ]_ B  _d y
)  =  S. A
( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B )  _d y )
6361, 62syl5eq 2517 . . . . . . . . . 10  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  S. A ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )
6458, 59, 633eqtrd 2509 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y )
6564fveq2d 5883 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( Re
`  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y ) )
6655resqcld 12480 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  e.  RR )
6766rered 13364 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( ( abs `  S. A B  _d x ) ^
2 ) )
68 ovex 6336 . . . . . . . . . 10  |-  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  e.  _V
6968a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  _V )
7069, 21itgre 22837 . . . . . . . 8  |-  ( ph  ->  ( Re `  S. A ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )  =  S. A
( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
7165, 67, 703eqtr3d 2513 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
7257, 71eqtr3d 2507 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  =  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
7337, 34, 36cbvitg 22812 . . . . . . . 8  |-  S. A
( abs `  B
)  _d x  =  S. A ( abs `  [_ y  /  x ]_ B )  _d y
7473oveq2i 6319 . . . . . . 7  |-  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B )  _d x )  =  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  [_ y  /  x ]_ B )  _d y )
751, 2, 42iblabsnc 32070 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
7638, 75syl5eqelr 2554 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  [_ y  /  x ]_ B ) )  e.  L^1 )
7755adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  S. A B  _d x )  e.  RR )
78 fconstmpt 4883 . . . . . . . . . . . 12  |-  ( A  X.  { ( abs `  S. A B  _d x ) } )  =  ( y  e.  A  |->  ( abs `  S. A B  _d x
) )
7978a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( A  X.  {
( abs `  S. A B  _d x
) } )  =  ( y  e.  A  |->  ( abs `  S. A B  _d x
) ) )
8029, 77, 31, 79, 39offval2 6567 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  X.  { ( abs `  S. A B  _d x
) } )  oF  x.  ( x  e.  A  |->  ( abs `  B ) ) )  =  ( y  e.  A  |->  ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) ) ) )
8142, 55, 47mbfmulc2re 22683 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  X.  { ( abs `  S. A B  _d x
) } )  oF  x.  ( x  e.  A  |->  ( abs `  B ) ) )  e. MblFn )
8280, 81eqeltrrd 2550 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  [_ y  /  x ]_ B ) ) )  e. MblFn )
8356, 31, 76, 82itgmulc2nc 32074 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
843adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  S. A B  _d x  e.  CC )
8584abscjd 13589 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( * `  S. A B  _d x ) )  =  ( abs `  S. A B  _d x ) )
8685oveq1d 6323 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
8727, 86eqtrd 2505 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x
)  x.  ( abs `  [_ y  /  x ]_ B ) ) )
8887itgeq2dv 22818 . . . . . . . 8  |-  ( ph  ->  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
8983, 88eqtr4d 2508 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y )
9074, 89syl5eq 2517 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
9154, 72, 903brtr4d 4426 . . . . 5  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  <_ 
( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) )
9291adantr 472 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) )  <_  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B
)  _d x ) )
9355adantr 472 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  e.  RR )
9444, 75itgrecl 22834 . . . . . 6  |-  ( ph  ->  S. A ( abs `  B )  _d x  e.  RR )
9594adantr 472 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  S. A ( abs `  B )  _d x  e.  RR )
96 simpr 468 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  0  <  ( abs `  S. A B  _d x ) )
97 lemul2 10480 . . . . 5  |-  ( ( ( abs `  S. A B  _d x
)  e.  RR  /\  S. A ( abs `  B
)  _d x  e.  RR  /\  ( ( abs `  S. A B  _d x )  e.  RR  /\  0  < 
( abs `  S. A B  _d x
) ) )  -> 
( ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
9893, 95, 93, 96, 97syl112anc 1296 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
9992, 98mpbird 240 . . 3  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
10099ex 441 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
1017absge0d 13583 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
10275, 44, 101itgge0 22847 . . 3  |-  ( ph  ->  0  <_  S. A
( abs `  B
)  _d x )
103 breq1 4398 . . 3  |-  ( 0  =  ( abs `  S. A B  _d x
)  ->  ( 0  <_  S. A ( abs `  B )  _d x  <->  ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x ) )
104102, 103syl5ibcom 228 . 2  |-  ( ph  ->  ( 0  =  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
1053absge0d 13583 . . 3  |-  ( ph  ->  0  <_  ( abs `  S. A B  _d x ) )
106 0re 9661 . . . 4  |-  0  e.  RR
107 leloe 9738 . . . 4  |-  ( ( 0  e.  RR  /\  ( abs `  S. A B  _d x )  e.  RR )  ->  (
0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
108106, 55, 107sylancr 676 . . 3  |-  ( ph  ->  ( 0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
109105, 108mpbid 215 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  \/  0  =  ( abs `  S. A B  _d x ) ) )
110100, 104, 109mpjaod 388 1  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031   [_csb 3349   {csn 3959   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   dom cdm 4839   ` cfv 5589  (class class class)co 6308    oFcof 6548   CCcc 9555   RRcr 9556   0cc0 9557    x. cmul 9562    < clt 9693    <_ cle 9694   2c2 10681   ^cexp 12310   *ccj 13236   Recre 13237   Imcim 13238   abscabs 13374   volcvol 22493  MblFncmbf 22651   L^1cibl 22654   S.citg 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-rest 15399  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cmp 20479  df-ovol 22494  df-vol 22496  df-mbf 22656  df-itg1 22657  df-itg2 22658  df-ibl 22659  df-itg 22660  df-0p 22707
This theorem is referenced by:  ftc1cnnclem  32079  ftc2nc  32090
  Copyright terms: Public domain W3C validator