MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgabs Structured version   Unicode version

Theorem itgabs 22004
Description: The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
itgabs  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itgabs.1 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 itgabs.2 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
31, 2itgcl 21953 . . . . . . . . . . 11  |-  ( ph  ->  S. A B  _d x  e.  CC )
43cjcld 12992 . . . . . . . . . 10  |-  ( ph  ->  ( * `  S. A B  _d x
)  e.  CC )
5 iblmbf 21937 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
62, 5syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
76, 1mbfmptcl 21807 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
87ralrimiva 2878 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
9 nfv 1683 . . . . . . . . . . . . 13  |-  F/ y  B  e.  CC
10 nfcsb1v 3451 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
1110nfel1 2645 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ B  e.  CC
12 csbeq1a 3444 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
1312eleq1d 2536 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( B  e.  CC  <->  [_ y  /  x ]_ B  e.  CC ) )
149, 11, 13cbvral 3084 . . . . . . . . . . . 12  |-  ( A. x  e.  A  B  e.  CC  <->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
158, 14sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
1615r19.21bi 2833 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  CC )
17 nfcv 2629 . . . . . . . . . . . 12  |-  F/_ y B
1817, 10, 12cbvmpt 4537 . . . . . . . . . . 11  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
1918, 2syl5eqelr 2560 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |-> 
[_ y  /  x ]_ B )  e.  L^1 )
204, 16, 19iblmulc2 22000 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  e.  L^1 )
214adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
* `  S. A B  _d x )  e.  CC )
2221, 16mulcld 9616 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  CC )
2322iblcn 21968 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  L^1  <->  ( (
y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) ) )  e.  L^1  /\  ( y  e.  A  |->  ( Im `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 ) ) )
2420, 23mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L^1  /\  ( y  e.  A  |->  ( Im `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 ) )
2524simpld 459 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 )
26 ovex 6309 . . . . . . . . 9  |-  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  e.  _V
2726a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  _V )
2827, 20iblabs 21998 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L^1 )
2922recld 12990 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
3022abscld 13230 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
3122releabsd 13245 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  <_ 
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )
3225, 28, 29, 30, 31itgle 21979 . . . . . 6  |-  ( ph  ->  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y  <_  S. A
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
333abscld 13230 . . . . . . . . 9  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  RR )
3433recnd 9622 . . . . . . . 8  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  CC )
3534sqvald 12275 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) ) )
363absvalsqd 13236 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) ) )
373, 4mulcomd 9617 . . . . . . . . . 10  |-  ( ph  ->  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) )  =  ( ( * `
 S. A B  _d x )  x.  S. A B  _d x ) )
3812, 17, 10cbvitg 21945 . . . . . . . . . . . 12  |-  S. A B  _d x  =  S. A [_ y  /  x ]_ B  _d y
3938oveq2i 6295 . . . . . . . . . . 11  |-  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  ( ( * `  S. A B  _d x
)  x.  S. A [_ y  /  x ]_ B  _d y
)
404, 16, 19itgmulc2 22003 . . . . . . . . . . 11  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A [_ y  /  x ]_ B  _d y
)  =  S. A
( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B )  _d y )
4139, 40syl5eq 2520 . . . . . . . . . 10  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  S. A ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )
4236, 37, 413eqtrd 2512 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y )
4342fveq2d 5870 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( Re
`  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y ) )
4433resqcld 12304 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  e.  RR )
4544rered 13020 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( ( abs `  S. A B  _d x ) ^
2 ) )
4627, 20itgre 21970 . . . . . . . 8  |-  ( ph  ->  ( Re `  S. A ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )  =  S. A
( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
4743, 45, 463eqtr3d 2516 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
4835, 47eqtr3d 2510 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  =  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
4912fveq2d 5870 . . . . . . . . 9  |-  ( x  =  y  ->  ( abs `  B )  =  ( abs `  [_ y  /  x ]_ B ) )
50 nfcv 2629 . . . . . . . . 9  |-  F/_ y
( abs `  B
)
51 nfcv 2629 . . . . . . . . . 10  |-  F/_ x abs
5251, 10nffv 5873 . . . . . . . . 9  |-  F/_ x
( abs `  [_ y  /  x ]_ B )
5349, 50, 52cbvitg 21945 . . . . . . . 8  |-  S. A
( abs `  B
)  _d x  =  S. A ( abs `  [_ y  /  x ]_ B )  _d y
5453oveq2i 6295 . . . . . . 7  |-  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B )  _d x )  =  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  [_ y  /  x ]_ B )  _d y )
5516abscld 13230 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  [_ y  /  x ]_ B )  e.  RR )
5616, 19iblabs 21998 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  [_ y  /  x ]_ B ) )  e.  L^1 )
5734, 55, 56itgmulc2 22003 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
5821, 16absmuld 13248 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
593adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  S. A B  _d x  e.  CC )
6059abscjd 13244 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( * `  S. A B  _d x ) )  =  ( abs `  S. A B  _d x ) )
6160oveq1d 6299 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
6258, 61eqtrd 2508 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x
)  x.  ( abs `  [_ y  /  x ]_ B ) ) )
6362itgeq2dv 21951 . . . . . . . 8  |-  ( ph  ->  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
6457, 63eqtr4d 2511 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y )
6554, 64syl5eq 2520 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
6632, 48, 653brtr4d 4477 . . . . 5  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  <_ 
( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) )
6766adantr 465 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) )  <_  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B
)  _d x ) )
6833adantr 465 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  e.  RR )
697abscld 13230 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
701, 2iblabs 21998 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
7169, 70itgrecl 21967 . . . . . 6  |-  ( ph  ->  S. A ( abs `  B )  _d x  e.  RR )
7271adantr 465 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  S. A ( abs `  B )  _d x  e.  RR )
73 simpr 461 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  0  <  ( abs `  S. A B  _d x ) )
74 lemul2 10395 . . . . 5  |-  ( ( ( abs `  S. A B  _d x
)  e.  RR  /\  S. A ( abs `  B
)  _d x  e.  RR  /\  ( ( abs `  S. A B  _d x )  e.  RR  /\  0  < 
( abs `  S. A B  _d x
) ) )  -> 
( ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
7568, 72, 68, 73, 74syl112anc 1232 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
7667, 75mpbird 232 . . 3  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
7776ex 434 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
787absge0d 13238 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
7970, 69, 78itgge0 21980 . . 3  |-  ( ph  ->  0  <_  S. A
( abs `  B
)  _d x )
80 breq1 4450 . . 3  |-  ( 0  =  ( abs `  S. A B  _d x
)  ->  ( 0  <_  S. A ( abs `  B )  _d x  <->  ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x ) )
8179, 80syl5ibcom 220 . 2  |-  ( ph  ->  ( 0  =  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
823absge0d 13238 . . 3  |-  ( ph  ->  0  <_  ( abs `  S. A B  _d x ) )
83 0re 9596 . . . 4  |-  0  e.  RR
84 leloe 9671 . . . 4  |-  ( ( 0  e.  RR  /\  ( abs `  S. A B  _d x )  e.  RR )  ->  (
0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
8583, 33, 84sylancr 663 . . 3  |-  ( ph  ->  ( 0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
8682, 85mpbid 210 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  \/  0  =  ( abs `  S. A B  _d x ) ) )
8777, 81, 86mpjaod 381 1  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   [_csb 3435   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492    x. cmul 9497    < clt 9628    <_ cle 9629   2c2 10585   ^cexp 12134   *ccj 12892   Recre 12893   Imcim 12894   abscabs 13030  MblFncmbf 21786   L^1cibl 21789   S.citg 21790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cc 8815  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-ofr 6525  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cn 19522  df-cnp 19523  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-ovol 21639  df-vol 21640  df-mbf 21791  df-itg1 21792  df-itg2 21793  df-ibl 21794  df-itg 21795  df-0p 21840
This theorem is referenced by:  ftc1a  22201  ftc1lem4  22203  itgulm  22565  fourierdlem47  31482  fourierdlem87  31522
  Copyright terms: Public domain W3C validator