MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Unicode version

Theorem itg2uba 22638
Description: Approximate version of itg2ub 22628. If  F approximately dominates  G, then  S.1 G  <_  S.2 F. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
itg2uba.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg2uba.3  |-  ( ph  ->  A  C_  RR )
itg2uba.4  |-  ( ph  ->  ( vol* `  A )  =  0 )
itg2uba.5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
Assertion
Ref Expression
itg2uba  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem itg2uba
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4  |-  ( ph  ->  G  e.  dom  S.1 )
2 itg1cl 22580 . . . 4  |-  ( G  e.  dom  S.1  ->  ( S.1 `  G )  e.  RR )
31, 2syl 17 . . 3  |-  ( ph  ->  ( S.1 `  G
)  e.  RR )
43rexrd 9636 . 2  |-  ( ph  ->  ( S.1 `  G
)  e.  RR* )
5 itg2uba.3 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
6 itg2uba.4 . . . . . . 7  |-  ( ph  ->  ( vol* `  A )  =  0 )
7 nulmbl 22426 . . . . . . 7  |-  ( ( A  C_  RR  /\  ( vol* `  A )  =  0 )  ->  A  e.  dom  vol )
85, 6, 7syl2anc 665 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
9 cmmbl 22425 . . . . . 6  |-  ( A  e.  dom  vol  ->  ( RR  \  A )  e.  dom  vol )
108, 9syl 17 . . . . 5  |-  ( ph  ->  ( RR  \  A
)  e.  dom  vol )
11 ifnot 3894 . . . . . . . 8  |-  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  A , 
0 ,  ( G `
 x ) )
12 eldif 3384 . . . . . . . . . 10  |-  ( x  e.  ( RR  \  A )  <->  ( x  e.  RR  /\  -.  x  e.  A ) )
1312baibr 912 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -.  x  e.  A  <->  x  e.  ( RR  \  A ) ) )
1413ifbid 3871 . . . . . . . 8  |-  ( x  e.  RR  ->  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1511, 14syl5eqr 2471 . . . . . . 7  |-  ( x  e.  RR  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1615mpteq2ia 4444 . . . . . 6  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1716i1fres 22600 . . . . 5  |-  ( ( G  e.  dom  S.1  /\  ( RR  \  A
)  e.  dom  vol )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
181, 10, 17syl2anc 665 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
19 itg1cl 22580 . . . 4  |-  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2018, 19syl 17 . . 3  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2120rexrd 9636 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e. 
RR* )
22 itg2uba.1 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
23 itg2cl 22627 . . 3  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( S.2 `  F )  e.  RR* )
2422, 23syl 17 . 2  |-  ( ph  ->  ( S.2 `  F
)  e.  RR* )
25 i1ff 22571 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
261, 25syl 17 . . . . . 6  |-  ( ph  ->  G : RR --> RR )
27 eldifi 3525 . . . . . 6  |-  ( y  e.  ( RR  \  A )  ->  y  e.  RR )
28 ffvelrn 5974 . . . . . 6  |-  ( ( G : RR --> RR  /\  y  e.  RR )  ->  ( G `  y
)  e.  RR )
2926, 27, 28syl2an 479 . . . . 5  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  e.  RR )
3029leidd 10126 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  ( G `  y )
)
31 eldif 3384 . . . . . 6  |-  ( y  e.  ( RR  \  A )  <->  ( y  e.  RR  /\  -.  y  e.  A ) )
32 eleq1 2489 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
33 fveq2 5820 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
3432, 33ifbieq2d 3874 . . . . . . . 8  |-  ( x  =  y  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
35 eqid 2423 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )
36 c0ex 9583 . . . . . . . . 9  |-  0  e.  _V
37 fvex 5830 . . . . . . . . 9  |-  ( G `
 y )  e. 
_V
3836, 37ifex 3917 . . . . . . . 8  |-  if ( y  e.  A , 
0 ,  ( G `
 y ) )  e.  _V
3934, 35, 38fvmpt 5903 . . . . . . 7  |-  ( y  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
40 iffalse 3858 . . . . . . 7  |-  ( -.  y  e.  A  ->  if ( y  e.  A ,  0 ,  ( G `  y ) )  =  ( G `
 y ) )
4139, 40sylan9eq 2477 . . . . . 6  |-  ( ( y  e.  RR  /\  -.  y  e.  A
)  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4231, 41sylbi 198 . . . . 5  |-  ( y  e.  ( RR  \  A )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4342adantl 467 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4430, 43breqtrrd 4388 . . 3  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
) )
451, 5, 6, 18, 44itg1lea 22607 . 2  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) ) )
46 iftrue 3855 . . . . . . . 8  |-  ( x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
4746adantl 467 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
4822ffvelrnda 5976 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,] +oo ) )
49 elxrge0 11687 . . . . . . . . . 10  |-  ( ( F `  x )  e.  ( 0 [,] +oo )  <->  ( ( F `
 x )  e. 
RR*  /\  0  <_  ( F `  x ) ) )
5048, 49sylib 199 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR*  /\  0  <_  ( F `  x
) ) )
5150simprd 464 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
5251adantr 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  0  <_  ( F `  x
) )
5347, 52eqbrtrd 4382 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
54 iffalse 3858 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  ( G `
 x ) )
5554adantl 467 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  =  ( G `  x ) )
56 itg2uba.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
5712, 56sylan2br 478 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR  /\  -.  x  e.  A ) )  -> 
( G `  x
)  <_  ( F `  x ) )
5857anassrs 652 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  ( G `  x
)  <_  ( F `  x ) )
5955, 58eqbrtrd 4382 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  <_  ( F `  x )
)
6053, 59pm2.61dan 798 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  <_  ( F `  x ) )
6160ralrimiva 2774 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
62 reex 9576 . . . . . 6  |-  RR  e.  _V
6362a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  _V )
64 fvex 5830 . . . . . . 7  |-  ( G `
 x )  e. 
_V
6536, 64ifex 3917 . . . . . 6  |-  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V
6665a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V )
67 fvex 5830 . . . . . 6  |-  ( F `
 x )  e. 
_V
6867a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
_V )
69 eqidd 2424 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )
7022feqmptd 5873 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
7163, 66, 68, 69, 70ofrfval2 6502 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F  <->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) ) )
7261, 71mpbird 235 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F )
73 itg2ub 22628 . . 3  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F
)  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
7422, 18, 72, 73syl3anc 1264 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
754, 21, 24, 45, 74xrletrd 11405 1  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2709   _Vcvv 3017    \ cdif 3371    C_ wss 3374   ifcif 3849   class class class wbr 4361    |-> cmpt 4420   dom cdm 4791   -->wf 5535   ` cfv 5539  (class class class)co 6244    oRcofr 6483   RRcr 9484   0cc0 9485   +oocpnf 9618   RR*cxr 9620    <_ cle 9622   [,]cicc 11584   vol*covol 22350   volcvol 22352   S.1citg1 22510   S.2citg2 22511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562  ax-pre-sup 9563  ax-addf 9564
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-disj 4333  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-se 4751  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-isom 5548  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-of 6484  df-ofr 6485  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-fi 7873  df-sup 7904  df-inf 7905  df-oi 7973  df-card 8320  df-cda 8544  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-div 10216  df-nn 10556  df-2 10614  df-3 10615  df-n0 10816  df-z 10884  df-uz 11106  df-q 11211  df-rp 11249  df-xneg 11355  df-xadd 11356  df-xmul 11357  df-ioo 11585  df-ico 11587  df-icc 11588  df-fz 11731  df-fzo 11862  df-fl 11973  df-seq 12159  df-exp 12218  df-hash 12461  df-cj 13101  df-re 13102  df-im 13103  df-sqrt 13237  df-abs 13238  df-clim 13490  df-sum 13691  df-rest 15259  df-topgen 15280  df-psmet 18900  df-xmet 18901  df-met 18902  df-bl 18903  df-mopn 18904  df-top 19858  df-bases 19859  df-topon 19860  df-cmp 20339  df-ovol 22353  df-vol 22355  df-mbf 22514  df-itg1 22515  df-itg2 22516
This theorem is referenced by:  itg2lea  22639  itg2split  22644
  Copyright terms: Public domain W3C validator