MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Unicode version

Theorem itg2uba 21357
Description: Approximate version of itg2ub 21347. If  F approximately dominates  G, then  S.1 G  <_  S.2 F. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
itg2uba.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg2uba.3  |-  ( ph  ->  A  C_  RR )
itg2uba.4  |-  ( ph  ->  ( vol* `  A )  =  0 )
itg2uba.5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
Assertion
Ref Expression
itg2uba  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem itg2uba
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4  |-  ( ph  ->  G  e.  dom  S.1 )
2 itg1cl 21299 . . . 4  |-  ( G  e.  dom  S.1  ->  ( S.1 `  G )  e.  RR )
31, 2syl 16 . . 3  |-  ( ph  ->  ( S.1 `  G
)  e.  RR )
43rexrd 9547 . 2  |-  ( ph  ->  ( S.1 `  G
)  e.  RR* )
5 itg2uba.3 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
6 itg2uba.4 . . . . . . 7  |-  ( ph  ->  ( vol* `  A )  =  0 )
7 nulmbl 21153 . . . . . . 7  |-  ( ( A  C_  RR  /\  ( vol* `  A )  =  0 )  ->  A  e.  dom  vol )
85, 6, 7syl2anc 661 . . . . . 6  |-  ( ph  ->  A  e.  dom  vol )
9 cmmbl 21152 . . . . . 6  |-  ( A  e.  dom  vol  ->  ( RR  \  A )  e.  dom  vol )
108, 9syl 16 . . . . 5  |-  ( ph  ->  ( RR  \  A
)  e.  dom  vol )
11 ifnot 3945 . . . . . . . 8  |-  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  A , 
0 ,  ( G `
 x ) )
12 eldif 3449 . . . . . . . . . 10  |-  ( x  e.  ( RR  \  A )  <->  ( x  e.  RR  /\  -.  x  e.  A ) )
1312baibr 897 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -.  x  e.  A  <->  x  e.  ( RR  \  A ) ) )
1413ifbid 3922 . . . . . . . 8  |-  ( x  e.  RR  ->  if ( -.  x  e.  A ,  ( G `  x ) ,  0 )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1511, 14syl5eqr 2509 . . . . . . 7  |-  ( x  e.  RR  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1615mpteq2ia 4485 . . . . . 6  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  ( RR 
\  A ) ,  ( G `  x
) ,  0 ) )
1716i1fres 21319 . . . . 5  |-  ( ( G  e.  dom  S.1  /\  ( RR  \  A
)  e.  dom  vol )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
181, 10, 17syl2anc 661 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 )
19 itg1cl 21299 . . . 4  |-  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2018, 19syl 16 . . 3  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e.  RR )
2120rexrd 9547 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  e. 
RR* )
22 itg2uba.1 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
23 itg2cl 21346 . . 3  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( S.2 `  F )  e.  RR* )
2422, 23syl 16 . 2  |-  ( ph  ->  ( S.2 `  F
)  e.  RR* )
25 i1ff 21290 . . . . . . 7  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
261, 25syl 16 . . . . . 6  |-  ( ph  ->  G : RR --> RR )
27 eldifi 3589 . . . . . 6  |-  ( y  e.  ( RR  \  A )  ->  y  e.  RR )
28 ffvelrn 5953 . . . . . 6  |-  ( ( G : RR --> RR  /\  y  e.  RR )  ->  ( G `  y
)  e.  RR )
2926, 27, 28syl2an 477 . . . . 5  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  e.  RR )
3029leidd 10020 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  ( G `  y )
)
31 eldif 3449 . . . . . 6  |-  ( y  e.  ( RR  \  A )  <->  ( y  e.  RR  /\  -.  y  e.  A ) )
32 eleq1 2526 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
33 fveq2 5802 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
3432, 33ifbieq2d 3925 . . . . . . . 8  |-  ( x  =  y  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
35 eqid 2454 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
0 ,  ( G `
 x ) ) )
36 c0ex 9494 . . . . . . . . 9  |-  0  e.  _V
37 fvex 5812 . . . . . . . . 9  |-  ( G `
 y )  e. 
_V
3836, 37ifex 3969 . . . . . . . 8  |-  if ( y  e.  A , 
0 ,  ( G `
 y ) )  e.  _V
3934, 35, 38fvmpt 5886 . . . . . . 7  |-  ( y  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  if ( y  e.  A , 
0 ,  ( G `
 y ) ) )
40 iffalse 3910 . . . . . . 7  |-  ( -.  y  e.  A  ->  if ( y  e.  A ,  0 ,  ( G `  y ) )  =  ( G `
 y ) )
4139, 40sylan9eq 2515 . . . . . 6  |-  ( ( y  e.  RR  /\  -.  y  e.  A
)  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4231, 41sylbi 195 . . . . 5  |-  ( y  e.  ( RR  \  A )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4342adantl 466 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
)  =  ( G `
 y ) )
4430, 43breqtrrd 4429 . . 3  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( G `  y )  <_  (
( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) `  y
) )
451, 5, 6, 18, 44itg1lea 21326 . 2  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) ) )
46 iftrue 3908 . . . . . . . 8  |-  ( x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
4746adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  0 )
4822ffvelrnda 5955 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,] +oo ) )
49 elxrge0 11514 . . . . . . . . . 10  |-  ( ( F `  x )  e.  ( 0 [,] +oo )  <->  ( ( F `
 x )  e. 
RR*  /\  0  <_  ( F `  x ) ) )
5048, 49sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR*  /\  0  <_  ( F `  x
) ) )
5150simprd 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
5251adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  0  <_  ( F `  x
) )
5347, 52eqbrtrd 4423 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
54 iffalse 3910 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  0 ,  ( G `  x ) )  =  ( G `
 x ) )
5554adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  =  ( G `  x ) )
56 itg2uba.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( G `  x )  <_  ( F `  x )
)
5712, 56sylan2br 476 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR  /\  -.  x  e.  A ) )  -> 
( G `  x
)  <_  ( F `  x ) )
5857anassrs 648 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  ( G `  x
)  <_  ( F `  x ) )
5955, 58eqbrtrd 4423 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  0 ,  ( G `  x
) )  <_  ( F `  x )
)
6053, 59pm2.61dan 789 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  <_  ( F `  x ) )
6160ralrimiva 2830 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) )
62 reex 9487 . . . . . 6  |-  RR  e.  _V
6362a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  _V )
64 fvex 5812 . . . . . . 7  |-  ( G `
 x )  e. 
_V
6536, 64ifex 3969 . . . . . 6  |-  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V
6665a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
0 ,  ( G `
 x ) )  e.  _V )
67 fvex 5812 . . . . . 6  |-  ( F `
 x )  e. 
_V
6867a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
_V )
69 eqidd 2455 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )
7022feqmptd 5856 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
7163, 66, 68, 69, 70ofrfval2 6450 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F  <->  A. x  e.  RR  if ( x  e.  A ,  0 ,  ( G `  x ) )  <_  ( F `  x ) ) )
7261, 71mpbird 232 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F )
73 itg2ub 21347 . . 3  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) )  oR  <_  F
)  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
7422, 18, 72, 73syl3anc 1219 . 2  |-  ( ph  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  0 ,  ( G `  x ) ) ) )  <_ 
( S.2 `  F ) )
754, 21, 24, 45, 74xrletrd 11250 1  |-  ( ph  ->  ( S.1 `  G
)  <_  ( S.2 `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078    \ cdif 3436    C_ wss 3439   ifcif 3902   class class class wbr 4403    |-> cmpt 4461   dom cdm 4951   -->wf 5525   ` cfv 5529  (class class class)co 6203    oRcofr 6432   RRcr 9395   0cc0 9396   +oocpnf 9529   RR*cxr 9531    <_ cle 9533   [,]cicc 11417   vol*covol 21081   volcvol 21082   S.1citg1 21231   S.2citg2 21232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-disj 4374  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-ofr 6434  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ioo 11418  df-ico 11420  df-icc 11421  df-fz 11558  df-fzo 11669  df-fl 11762  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-clim 13087  df-sum 13285  df-rest 14483  df-topgen 14504  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-top 18638  df-bases 18640  df-topon 18641  df-cmp 19125  df-ovol 21083  df-vol 21084  df-mbf 21235  df-itg1 21236  df-itg2 21237
This theorem is referenced by:  itg2lea  21358  itg2split  21363
  Copyright terms: Public domain W3C validator