MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2splitlem Structured version   Unicode version

Theorem itg2splitlem 21226
Description: Lemma for itg2split 21227. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a  |-  ( ph  ->  A  e.  dom  vol )
itg2split.b  |-  ( ph  ->  B  e.  dom  vol )
itg2split.i  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
itg2split.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
itg2split.c  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
itg2split.f  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
itg2split.g  |-  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) )
itg2split.h  |-  H  =  ( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
itg2split.sf  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2split.sg  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
Assertion
Ref Expression
itg2splitlem  |-  ( ph  ->  ( S.2 `  H
)  <_  ( ( S.2 `  F )  +  ( S.2 `  G
) ) )
Distinct variable groups:    ph, x    x, A    x, B    x, U
Allowed substitution hints:    C( x)    F( x)    G( x)    H( x)

Proof of Theorem itg2splitlem
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  f  e.  dom  S.1 )
2 itg1cl 21163 . . . . . 6  |-  ( f  e.  dom  S.1  ->  ( S.1 `  f )  e.  RR )
31, 2syl 16 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  f )  e.  RR )
4 itg2split.a . . . . . . . . 9  |-  ( ph  ->  A  e.  dom  vol )
54adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A  e.  dom  vol )
6 eqid 2443 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( f `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( f `  x
) ,  0 ) )
76i1fres 21183 . . . . . . . 8  |-  ( ( f  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 )
81, 5, 7syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 )
9 itg1cl 21163 . . . . . . 7  |-  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  e.  RR )
108, 9syl 16 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  e.  RR )
11 itg2split.b . . . . . . . . 9  |-  ( ph  ->  B  e.  dom  vol )
1211adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  B  e.  dom  vol )
13 eqid 2443 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( x  e.  B , 
( f `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  B , 
( f `  x
) ,  0 ) )
1413i1fres 21183 . . . . . . . 8  |-  ( ( f  e.  dom  S.1  /\  B  e.  dom  vol )  ->  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 )
151, 12, 14syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 )
16 itg1cl 21163 . . . . . . 7  |-  ( ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  e.  RR )
1715, 16syl 16 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  e.  RR )
1810, 17readdcld 9413 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  +  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )  e.  RR )
19 itg2split.sf . . . . . . 7  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
20 itg2split.sg . . . . . . 7  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
2119, 20readdcld 9413 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e.  RR )
2221adantr 465 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( ( S.2 `  F )  +  ( S.2 `  G
) )  e.  RR )
23 inss1 3570 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
24 mblss 21014 . . . . . . . . . 10  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
254, 24syl 16 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
2623, 25syl5ss 3367 . . . . . . . 8  |-  ( ph  ->  ( A  i^i  B
)  C_  RR )
2726adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( A  i^i  B )  C_  RR )
28 itg2split.i . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
2928adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
30 reex 9373 . . . . . . . . . . 11  |-  RR  e.  _V
3130a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  _V )
32 fvex 5701 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
33 c0ex 9380 . . . . . . . . . . . 12  |-  0  e.  _V
3432, 33ifex 3858 . . . . . . . . . . 11  |-  if ( x  e.  A , 
( f `  x
) ,  0 )  e.  _V
3534a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( f `  x
) ,  0 )  e.  _V )
3632, 33ifex 3858 . . . . . . . . . . 11  |-  if ( x  e.  B , 
( f `  x
) ,  0 )  e.  _V
3736a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  B , 
( f `  x
) ,  0 )  e.  _V )
38 eqidd 2444 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )
39 eqidd 2444 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )
4031, 35, 37, 38, 39offval2 6336 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )
4140adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `  x ) ,  0 )  +  if ( x  e.  B , 
( f `  x
) ,  0 ) ) ) )
428, 15i1fadd 21173 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  e.  dom  S.1 )
4341, 42eqeltrrd 2518 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  |->  ( if ( x  e.  A , 
( f `  x
) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  e.  dom  S.1 )
44 i1ff 21154 . . . . . . . . . . . . . 14  |-  ( f  e.  dom  S.1  ->  f : RR --> RR )
451, 44syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  f : RR
--> RR )
46 eldifi 3478 . . . . . . . . . . . . 13  |-  ( y  e.  ( RR  \ 
( A  i^i  B
) )  ->  y  e.  RR )
47 ffvelrn 5841 . . . . . . . . . . . . 13  |-  ( ( f : RR --> RR  /\  y  e.  RR )  ->  ( f `  y
)  e.  RR )
4845, 46, 47syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  e.  RR )
4948leidd 9906 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  <_  ( f `  y ) )
5049adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  (
f `  y )  <_  ( f `  y
) )
51 iftrue 3797 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  if ( y  e.  A ,  ( f `  y ) ,  0 )  =  ( f `
 y ) )
5251adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  if ( y  e.  A ,  ( f `  y ) ,  0 )  =  ( f `
 y ) )
53 eldifn 3479 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( RR  \ 
( A  i^i  B
) )  ->  -.  y  e.  ( A  i^i  B ) )
5453adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  ->  -.  y  e.  ( A  i^i  B ) )
55 elin 3539 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
5654, 55sylnib 304 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  ->  -.  ( y  e.  A  /\  y  e.  B
) )
57 imnan 422 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  A  ->  -.  y  e.  B
)  <->  -.  ( y  e.  A  /\  y  e.  B ) )
5856, 57sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( y  e.  A  ->  -.  y  e.  B
) )
5958imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  -.  y  e.  B )
60 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  y  e.  B  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  =  0 )
6159, 60syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  =  0 )
6252, 61oveq12d 6109 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  =  ( ( f `  y )  +  0 ) )
6348recnd 9412 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  e.  CC )
6463adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  (
f `  y )  e.  CC )
6564addid1d 9569 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  (
( f `  y
)  +  0 )  =  ( f `  y ) )
6662, 65eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  =  ( f `
 y ) )
6750, 66breqtrrd 4318 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  y  e.  A )  ->  (
f `  y )  <_  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B ,  ( f `
 y ) ,  0 ) ) )
6849ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  y  e.  B )  ->  (
f `  y )  <_  ( f `  y
) )
69 iftrue 3797 . . . . . . . . . . . . 13  |-  ( y  e.  B  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  =  ( f `
 y ) )
7069adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  y  e.  B )  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  =  ( f `
 y ) )
7168, 70breqtrrd 4318 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  y  e.  B )  ->  (
f `  y )  <_  if ( y  e.  B ,  ( f `
 y ) ,  0 ) )
72 itg2split.u . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  U  =  ( A  u.  B ) )
7372ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  ->  U  =  ( A  u.  B ) )
7473eleq2d 2510 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( y  e.  U  <->  y  e.  ( A  u.  B ) ) )
75 elun 3497 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A  u.  B )  <->  ( y  e.  A  \/  y  e.  B ) )
7674, 75syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( y  e.  U  <->  ( y  e.  A  \/  y  e.  B )
) )
7776notbid 294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( -.  y  e.  U  <->  -.  ( y  e.  A  \/  y  e.  B ) ) )
78 ioran 490 . . . . . . . . . . . . . . . 16  |-  ( -.  ( y  e.  A  \/  y  e.  B
)  <->  ( -.  y  e.  A  /\  -.  y  e.  B ) )
7977, 78syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( -.  y  e.  U  <->  ( -.  y  e.  A  /\  -.  y  e.  B ) ) )
8079biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  ( -.  y  e.  A  /\  -.  y  e.  B
) )  ->  -.  y  e.  U )
81 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  f  oR  <_  H )
82 ffn 5559 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : RR --> RR  ->  f  Fn  RR )
8345, 82syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  f  Fn  RR )
84 itg2split.c . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
8584adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
86 0e0iccpnf 11396 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  ( 0 [,] +oo )
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  U )  ->  0  e.  ( 0 [,] +oo ) )
8885, 87ifclda 3821 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  U ,  C ,  0 )  e.  ( 0 [,] +oo ) )
89 itg2split.h . . . . . . . . . . . . . . . . . . . . . . 23  |-  H  =  ( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
9088, 89fmptd 5867 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  H : RR --> ( 0 [,] +oo ) )
91 ffn 5559 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( H : RR --> ( 0 [,] +oo )  ->  H  Fn  RR )
9290, 91syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  H  Fn  RR )
9392adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  H  Fn  RR )
9430a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  RR  e.  _V )
95 inidm 3559 . . . . . . . . . . . . . . . . . . . 20  |-  ( RR 
i^i  RR )  =  RR
96 eqidd 2444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  RR )  ->  ( f `  y
)  =  ( f `
 y ) )
97 eqidd 2444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  RR )  ->  ( H `  y
)  =  ( H `
 y ) )
9883, 93, 94, 94, 95, 96, 97ofrfval 6328 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( f  oR  <_  H  <->  A. y  e.  RR  ( f `  y )  <_  ( H `  y )
) )
9981, 98mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A. y  e.  RR  ( f `  y )  <_  ( H `  y )
)
10099r19.21bi 2814 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  RR )  ->  ( f `  y
)  <_  ( H `  y ) )
10146, 100sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  <_  ( H `  y ) )
102101adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  U )  ->  (
f `  y )  <_  ( H `  y
) )
10346adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
y  e.  RR )
104 eldif 3338 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( RR  \  U )  <->  ( y  e.  RR  /\  -.  y  e.  U ) )
105 nfcv 2579 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
y
106 nfmpt1 4381 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
10789, 106nfcxfr 2576 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x H
108107, 105nffv 5698 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( H `  y
)
109108nfeq1 2588 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( H `  y
)  =  0
110 fveq2 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
111110eqeq1d 2451 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( H `  x
)  =  0  <->  ( H `  y )  =  0 ) )
112 eldif 3338 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( RR  \  U )  <->  ( x  e.  RR  /\  -.  x  e.  U ) )
11389fvmpt2i 5780 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  ( H `  x )  =  (  _I  `  if ( x  e.  U ,  C ,  0 ) ) )
114 iffalse 3799 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  x  e.  U  ->  if ( x  e.  U ,  C ,  0 )  =  0 )
115114fveq2d 5695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  x  e.  U  -> 
(  _I  `  if ( x  e.  U ,  C ,  0 ) )  =  (  _I 
`  0 ) )
116 0cn 9378 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
117 fvi 5748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
118116, 117ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  (  _I 
`  0 )  =  0
119115, 118syl6eq 2491 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  x  e.  U  -> 
(  _I  `  if ( x  e.  U ,  C ,  0 ) )  =  0 )
120113, 119sylan9eq 2495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  -.  x  e.  U
)  ->  ( H `  x )  =  0 )
121112, 120sylbi 195 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( RR  \  U )  ->  ( H `  x )  =  0 )
122105, 109, 111, 121vtoclgaf 3035 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( RR  \  U )  ->  ( H `  y )  =  0 )
123104, 122sylbir 213 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR  /\  -.  y  e.  U
)  ->  ( H `  y )  =  0 )
124103, 123sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  U )  ->  ( H `  y )  =  0 )
125102, 124breqtrd 4316 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  U )  ->  (
f `  y )  <_  0 )
12680, 125syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  ( -.  y  e.  A  /\  -.  y  e.  B
) )  ->  (
f `  y )  <_  0 )
127126anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  -.  y  e.  B )  ->  ( f `  y
)  <_  0 )
12860adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  -.  y  e.  B )  ->  if ( y  e.  B ,  ( f `
 y ) ,  0 )  =  0 )
129127, 128breqtrrd 4318 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  /\  -.  y  e.  B )  ->  ( f `  y
)  <_  if (
y  e.  B , 
( f `  y
) ,  0 ) )
13071, 129pm2.61dan 789 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  (
f `  y )  <_  if ( y  e.  B ,  ( f `
 y ) ,  0 ) )
131 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  y  e.  A  ->  if ( y  e.  A ,  ( f `  y ) ,  0 )  =  0 )
132131adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  if ( y  e.  A ,  ( f `  y ) ,  0 )  =  0 )
133132oveq1d 6106 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  =  ( 0  +  if ( y  e.  B ,  ( f `  y ) ,  0 ) ) )
134 0re 9386 . . . . . . . . . . . . . . 15  |-  0  e.  RR
135 ifcl 3831 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  y
)  e.  RR  /\  0  e.  RR )  ->  if ( y  e.  B ,  ( f `
 y ) ,  0 )  e.  RR )
13648, 134, 135sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  e.  RR )
137136recnd 9412 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  e.  CC )
138137adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  if ( y  e.  B ,  ( f `  y ) ,  0 )  e.  CC )
139138addid2d 9570 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  (
0  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  =  if ( y  e.  B , 
( f `  y
) ,  0 ) )
140133, 139eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  =  if ( y  e.  B , 
( f `  y
) ,  0 ) )
141130, 140breqtrrd 4318 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  dom  S.1 
/\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  y  e.  A )  ->  (
f `  y )  <_  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B ,  ( f `
 y ) ,  0 ) ) )
14267, 141pm2.61dan 789 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  <_  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) ) )
143 eleq1 2503 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
144 fveq2 5691 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
f `  x )  =  ( f `  y ) )
145143, 144ifbieq1d 3812 . . . . . . . . . . 11  |-  ( x  =  y  ->  if ( x  e.  A ,  ( f `  x ) ,  0 )  =  if ( y  e.  A , 
( f `  y
) ,  0 ) )
146 eleq1 2503 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
147146, 144ifbieq1d 3812 . . . . . . . . . . 11  |-  ( x  =  y  ->  if ( x  e.  B ,  ( f `  x ) ,  0 )  =  if ( y  e.  B , 
( f `  y
) ,  0 ) )
148145, 147oveq12d 6109 . . . . . . . . . 10  |-  ( x  =  y  ->  ( if ( x  e.  A ,  ( f `  x ) ,  0 )  +  if ( x  e.  B , 
( f `  x
) ,  0 ) )  =  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) ) )
149 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `  x ) ,  0 )  +  if ( x  e.  B , 
( f `  x
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )
150 ovex 6116 . . . . . . . . . 10  |-  ( if ( y  e.  A ,  ( f `  y ) ,  0 )  +  if ( y  e.  B , 
( f `  y
) ,  0 ) )  e.  _V
151148, 149, 150fvmpt 5774 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) `  y )  =  ( if ( y  e.  A ,  ( f `
 y ) ,  0 )  +  if ( y  e.  B ,  ( f `  y ) ,  0 ) ) )
152103, 151syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( ( x  e.  RR  |->  ( if ( x  e.  A , 
( f `  x
) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) `  y )  =  ( if ( y  e.  A , 
( f `  y
) ,  0 )  +  if ( y  e.  B ,  ( f `  y ) ,  0 ) ) )
153142, 152breqtrrd 4318 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  y  e.  ( RR  \  ( A  i^i  B
) ) )  -> 
( f `  y
)  <_  ( (
x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) `  y ) )
1541, 27, 29, 43, 153itg1lea 21190 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  f )  <_  ( S.1 `  ( x  e.  RR  |->  ( if ( x  e.  A , 
( f `  x
) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) ) )
15541fveq2d 5695 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )  =  ( S.1 `  (
x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) ) )
1568, 15itg1add 21179 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )  =  ( ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  +  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) ) )
157155, 156eqtr3d 2477 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( f `
 x ) ,  0 )  +  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )  =  ( ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  +  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) ) )
158154, 157breqtrd 4316 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  f )  <_  (
( S.1 `  ( x  e.  RR  |->  if ( x  e.  A , 
( f `  x
) ,  0 ) ) )  +  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B , 
( f `  x
) ,  0 ) ) ) ) )
15919adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.2 `  F )  e.  RR )
16020adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.2 `  G )  e.  RR )
161 ssun1 3519 . . . . . . . . . . . . . 14  |-  A  C_  ( A  u.  B
)
162161, 72syl5sseqr 3405 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  U )
163162sselda 3356 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U )
164163adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  x  e.  U )
165164, 85syldan 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  C  e.  ( 0 [,] +oo ) )
16686a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
167165, 166ifclda 3821 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  C ,  0 )  e.  ( 0 [,] +oo ) )
168 itg2split.f . . . . . . . . 9  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
169167, 168fmptd 5867 . . . . . . . 8  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
170169adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  F : RR
--> ( 0 [,] +oo ) )
171 nfv 1673 . . . . . . . . . 10  |-  F/ x ph
172 nfv 1673 . . . . . . . . . . 11  |-  F/ x  f  e.  dom  S.1
173 nfcv 2579 . . . . . . . . . . . 12  |-  F/_ x
f
174 nfcv 2579 . . . . . . . . . . . 12  |-  F/_ x  oR  <_
175173, 174, 107nfbr 4336 . . . . . . . . . . 11  |-  F/ x  f  oR  <_  H
176172, 175nfan 1861 . . . . . . . . . 10  |-  F/ x
( f  e.  dom  S.1 
/\  f  oR  <_  H )
177171, 176nfan 1861 . . . . . . . . 9  |-  F/ x
( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )
1785, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A  C_  RR )
179178sselda 3356 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  x  e.  RR )
18030a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  RR  e.  _V )
18132a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  x  e.  RR )  ->  (
f `  x )  e.  _V )
18288adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  f  e.  dom  S.1 )  /\  x  e.  RR )  ->  if ( x  e.  U ,  C ,  0 )  e.  ( 0 [,] +oo ) )
18344adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  f : RR --> RR )
184183feqmptd 5744 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  f  =  ( x  e.  RR  |->  ( f `  x ) ) )
18589a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  H  =  ( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) ) )
186180, 181, 182, 184, 185ofrfval2 6337 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  H 
<-> 
A. x  e.  RR  ( f `  x
)  <_  if (
x  e.  U ,  C ,  0 ) ) )
187186biimpd 207 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  H  ->  A. x  e.  RR  ( f `  x
)  <_  if (
x  e.  U ,  C ,  0 ) ) )
188187impr 619 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A. x  e.  RR  ( f `  x )  <_  if ( x  e.  U ,  C ,  0 ) )
189188r19.21bi 2814 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  RR )  ->  ( f `  x
)  <_  if (
x  e.  U ,  C ,  0 ) )
190179, 189syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  ( f `  x
)  <_  if (
x  e.  U ,  C ,  0 ) )
191163adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  x  e.  U )
192 iftrue 3797 . . . . . . . . . . . . . 14  |-  ( x  e.  U  ->  if ( x  e.  U ,  C ,  0 )  =  C )
193191, 192syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  if ( x  e.  U ,  C , 
0 )  =  C )
194190, 193breqtrd 4316 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  ( f `  x
)  <_  C )
195 iftrue 3797 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( f `  x ) ,  0 )  =  ( f `
 x ) )
196195adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  if ( x  e.  A ,  ( f `
 x ) ,  0 )  =  ( f `  x ) )
197 iftrue 3797 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  C )
198197adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  if ( x  e.  A ,  C , 
0 )  =  C )
199194, 196, 1983brtr4d 4322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  A )  ->  if ( x  e.  A ,  ( f `
 x ) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) )
200 0le0 10411 . . . . . . . . . . . . . 14  |-  0  <_  0
201200a1i 11 . . . . . . . . . . . . 13  |-  ( -.  x  e.  A  -> 
0  <_  0 )
202 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( f `  x ) ,  0 )  =  0 )
203 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  0 )
204201, 202, 2033brtr4d 4322 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( f `  x ) ,  0 )  <_  if (
x  e.  A ,  C ,  0 ) )
205204adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  -.  x  e.  A
)  ->  if (
x  e.  A , 
( f `  x
) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) )
206199, 205pm2.61dan 789 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  if (
x  e.  A , 
( f `  x
) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) )
207206a1d 25 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  ->  if (
x  e.  A , 
( f `  x
) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) ) )
208177, 207ralrimi 2797 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A. x  e.  RR  if ( x  e.  A ,  ( f `  x ) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) )
209168a1i 11 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )
21031, 35, 167, 38, 209ofrfval2 6337 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( x  e.  A ,  ( f `  x ) ,  0 )  <_  if (
x  e.  A ,  C ,  0 ) ) )
211210adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( x  e.  A ,  ( f `  x ) ,  0 )  <_  if ( x  e.  A ,  C ,  0 ) ) )
212208, 211mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oR  <_  F
)
213 itg2ub 21211 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) )  oR  <_  F
)  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  <_ 
( S.2 `  F ) )
214170, 8, 212, 213syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  <_ 
( S.2 `  F ) )
215 ssun2 3520 . . . . . . . . . . . . . 14  |-  B  C_  ( A  u.  B
)
216215, 72syl5sseqr 3405 . . . . . . . . . . . . 13  |-  ( ph  ->  B  C_  U )
217216sselda 3356 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  U )
218217adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  B )  ->  x  e.  U )
219218, 85syldan 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  B )  ->  C  e.  ( 0 [,] +oo ) )
22086a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,] +oo ) )
221219, 220ifclda 3821 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  B ,  C ,  0 )  e.  ( 0 [,] +oo ) )
222 itg2split.g . . . . . . . . 9  |-  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) )
223221, 222fmptd 5867 . . . . . . . 8  |-  ( ph  ->  G : RR --> ( 0 [,] +oo ) )
224223adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  G : RR
--> ( 0 [,] +oo ) )
225 mblss 21014 . . . . . . . . . . . . . . . 16  |-  ( B  e.  dom  vol  ->  B 
C_  RR )
22612, 225syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  B  C_  RR )
227226sselda 3356 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  x  e.  RR )
228227, 189syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  ( f `  x
)  <_  if (
x  e.  U ,  C ,  0 ) )
229217adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  x  e.  U )
230229, 192syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  if ( x  e.  U ,  C , 
0 )  =  C )
231228, 230breqtrd 4316 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  ( f `  x
)  <_  C )
232 iftrue 3797 . . . . . . . . . . . . 13  |-  ( x  e.  B  ->  if ( x  e.  B ,  ( f `  x ) ,  0 )  =  ( f `
 x ) )
233232adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  if ( x  e.  B ,  ( f `
 x ) ,  0 )  =  ( f `  x ) )
234 iftrue 3797 . . . . . . . . . . . . 13  |-  ( x  e.  B  ->  if ( x  e.  B ,  C ,  0 )  =  C )
235234adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  if ( x  e.  B ,  C , 
0 )  =  C )
236231, 233, 2353brtr4d 4322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  x  e.  B )  ->  if ( x  e.  B ,  ( f `
 x ) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) )
237200a1i 11 . . . . . . . . . . . . 13  |-  ( -.  x  e.  B  -> 
0  <_  0 )
238 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  ( f `  x ) ,  0 )  =  0 )
239 iffalse 3799 . . . . . . . . . . . . 13  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  C ,  0 )  =  0 )
240237, 238, 2393brtr4d 4322 . . . . . . . . . . . 12  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  ( f `  x ) ,  0 )  <_  if (
x  e.  B ,  C ,  0 ) )
241240adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  H ) )  /\  -.  x  e.  B
)  ->  if (
x  e.  B , 
( f `  x
) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) )
242236, 241pm2.61dan 789 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  if (
x  e.  B , 
( f `  x
) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) )
243242a1d 25 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  ->  if (
x  e.  B , 
( f `  x
) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) ) )
244177, 243ralrimi 2797 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  A. x  e.  RR  if ( x  e.  B ,  ( f `  x ) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) )
245222a1i 11 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) ) )
24631, 37, 221, 39, 245ofrfval2 6337 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  oR  <_  G  <->  A. x  e.  RR  if ( x  e.  B ,  ( f `  x ) ,  0 )  <_  if (
x  e.  B ,  C ,  0 ) ) )
247246adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( (
x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  oR  <_  G  <->  A. x  e.  RR  if ( x  e.  B ,  ( f `  x ) ,  0 )  <_  if ( x  e.  B ,  C ,  0 ) ) )
248244, 247mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  oR  <_  G
)
249 itg2ub 21211 . . . . . . 7  |-  ( ( G : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) )  oR  <_  G
)  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  <_ 
( S.2 `  G ) )
250224, 15, 248, 249syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) )  <_ 
( S.2 `  G ) )
25110, 17, 159, 160, 214, 250le2addd 9957 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( f `  x ) ,  0 ) ) )  +  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  B ,  ( f `  x ) ,  0 ) ) ) )  <_  ( ( S.2 `  F )  +  ( S.2 `  G ) ) )
2523, 18, 22, 158, 251letrd 9528 . . . 4  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  H ) )  ->  ( S.1 `  f )  <_  (
( S.2 `  F )  +  ( S.2 `  G
) ) )
253252expr 615 . . 3  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  H  ->  ( S.1 `  f
)  <_  ( ( S.2 `  F )  +  ( S.2 `  G
) ) ) )
254253ralrimiva 2799 . 2  |-  ( ph  ->  A. f  e.  dom  S.1 ( f  oR  <_  H  ->  ( S.1 `  f )  <_ 
( ( S.2 `  F
)  +  ( S.2 `  G ) ) ) )
25521rexrd 9433 . . 3  |-  ( ph  ->  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e. 
RR* )
256 itg2leub 21212 . . 3  |-  ( ( H : RR --> ( 0 [,] +oo )  /\  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e. 
RR* )  ->  (
( S.2 `  H )  <_  ( ( S.2 `  F )  +  ( S.2 `  G ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  H  ->  ( S.1 `  f )  <_ 
( ( S.2 `  F
)  +  ( S.2 `  G ) ) ) ) )
25790, 255, 256syl2anc 661 . 2  |-  ( ph  ->  ( ( S.2 `  H
)  <_  ( ( S.2 `  F )  +  ( S.2 `  G
) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  H  ->  ( S.1 `  f )  <_  ( ( S.2 `  F )  +  ( S.2 `  G ) ) ) ) )
258254, 257mpbird 232 1  |-  ( ph  ->  ( S.2 `  H
)  <_  ( ( S.2 `  F )  +  ( S.2 `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   ifcif 3791   class class class wbr 4292    e. cmpt 4350    _I cid 4631   dom cdm 4840    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091    oFcof 6318    oRcofr 6319   CCcc 9280   RRcr 9281   0cc0 9282    + caddc 9285   +oocpnf 9415   RR*cxr 9417    <_ cle 9419   [,]cicc 11303   vol*covol 20946   volcvol 20947   S.1citg1 21095   S.2citg2 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-disj 4263  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-ofr 6321  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-rest 14361  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-top 18503  df-bases 18505  df-topon 18506  df-cmp 18990  df-ovol 20948  df-vol 20949  df-mbf 21099  df-itg1 21100  df-itg2 21101
This theorem is referenced by:  itg2split  21227
  Copyright terms: Public domain W3C validator