MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Unicode version

Theorem itg2split 21230
Description: The  S.2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 21240 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a  |-  ( ph  ->  A  e.  dom  vol )
itg2split.b  |-  ( ph  ->  B  e.  dom  vol )
itg2split.i  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
itg2split.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
itg2split.c  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
itg2split.f  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
itg2split.g  |-  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) )
itg2split.h  |-  H  =  ( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
itg2split.sf  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2split.sg  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
Assertion
Ref Expression
itg2split  |-  ( ph  ->  ( S.2 `  H
)  =  ( ( S.2 `  F )  +  ( S.2 `  G
) ) )
Distinct variable groups:    ph, x    x, A    x, B    x, U
Allowed substitution hints:    C( x)    F( x)    G( x)    H( x)

Proof of Theorem itg2split
Dummy variables  f 
g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.a . . 3  |-  ( ph  ->  A  e.  dom  vol )
2 itg2split.b . . 3  |-  ( ph  ->  B  e.  dom  vol )
3 itg2split.i . . 3  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
4 itg2split.u . . 3  |-  ( ph  ->  U  =  ( A  u.  B ) )
5 itg2split.c . . 3  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
6 itg2split.f . . 3  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
7 itg2split.g . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) )
8 itg2split.h . . 3  |-  H  =  ( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
9 itg2split.sf . . 3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
10 itg2split.sg . . 3  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itg2splitlem 21229 . 2  |-  ( ph  ->  ( S.2 `  H
)  <_  ( ( S.2 `  F )  +  ( S.2 `  G
) ) )
1210adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( S.2 `  G )  e.  RR )
135adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  U )  ->  C  e.  ( 0 [,] +oo ) )
14 0e0iccpnf 11399 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] +oo )
1514a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  U )  ->  0  e.  ( 0 [,] +oo ) )
1613, 15ifclda 3824 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  U ,  C ,  0 )  e.  ( 0 [,] +oo ) )
1716, 8fmptd 5870 . . . . . . . . 9  |-  ( ph  ->  H : RR --> ( 0 [,] +oo ) )
189, 10readdcld 9416 . . . . . . . . 9  |-  ( ph  ->  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e.  RR )
19 itg2lecl 21219 . . . . . . . . 9  |-  ( ( H : RR --> ( 0 [,] +oo )  /\  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e.  RR  /\  ( S.2 `  H )  <_  (
( S.2 `  F )  +  ( S.2 `  G
) ) )  -> 
( S.2 `  H )  e.  RR )
2017, 18, 11, 19syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( S.2 `  H
)  e.  RR )
2120adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( S.2 `  H )  e.  RR )
22 itg1cl 21166 . . . . . . . 8  |-  ( f  e.  dom  S.1  ->  ( S.1 `  f )  e.  RR )
2322ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( S.1 `  f )  e.  RR )
24 simprll 761 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  f  e.  dom  S.1 )
25 simprrl 763 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  g  e.  dom  S.1 )
2624, 25itg1add 21182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.1 `  (
f  oF  +  g ) )  =  ( ( S.1 `  f
)  +  ( S.1 `  g ) ) )
2717adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  H : RR --> ( 0 [,] +oo ) )
2824, 25i1fadd 21176 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( f  oF  +  g )  e.  dom  S.1 )
29 inss1 3573 . . . . . . . . . . . . . . . 16  |-  ( A  i^i  B )  C_  A
30 mblss 21017 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
311, 30syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  C_  RR )
3229, 31syl5ss 3370 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  i^i  B
)  C_  RR )
3332adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( A  i^i  B )  C_  RR )
343adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( vol* `  ( A  i^i  B
) )  =  0 )
35 nfv 1673 . . . . . . . . . . . . . . . . . 18  |-  F/ x ph
36 nfv 1673 . . . . . . . . . . . . . . . . . . . 20  |-  F/ x  f  e.  dom  S.1
37 nfcv 2582 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
f
38 nfcv 2582 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x  oR  <_
39 nfmpt1 4384 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ x
( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) )
406, 39nfcxfr 2579 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x F
4137, 38, 40nfbr 4339 . . . . . . . . . . . . . . . . . . . 20  |-  F/ x  f  oR  <_  F
4236, 41nfan 1861 . . . . . . . . . . . . . . . . . . 19  |-  F/ x
( f  e.  dom  S.1 
/\  f  oR  <_  F )
43 nfv 1673 . . . . . . . . . . . . . . . . . . . 20  |-  F/ x  g  e.  dom  S.1
44 nfcv 2582 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
g
45 nfmpt1 4384 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ x
( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) )
467, 45nfcxfr 2579 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x G
4744, 38, 46nfbr 4339 . . . . . . . . . . . . . . . . . . . 20  |-  F/ x  g  oR  <_  G
4843, 47nfan 1861 . . . . . . . . . . . . . . . . . . 19  |-  F/ x
( g  e.  dom  S.1 
/\  g  oR  <_  G )
4942, 48nfan 1861 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) )
5035, 49nfan 1861 . . . . . . . . . . . . . . . . 17  |-  F/ x
( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )
51 eldifi 3481 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( RR  \ 
( A  i^i  B
) )  ->  x  e.  RR )
52 i1ff 21157 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  e.  dom  S.1  ->  f : RR --> RR )
5324, 52syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  f : RR --> RR )
54 ffn 5562 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : RR --> RR  ->  f  Fn  RR )
5553, 54syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  f  Fn  RR )
56 i1ff 21157 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  e.  dom  S.1  ->  g : RR --> RR )
5725, 56syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  g : RR --> RR )
58 ffn 5562 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g : RR --> RR  ->  g  Fn  RR )
5957, 58syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  g  Fn  RR )
60 reex 9376 . . . . . . . . . . . . . . . . . . . . . 22  |-  RR  e.  _V
6160a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  RR  e.  _V )
62 inidm 3562 . . . . . . . . . . . . . . . . . . . . 21  |-  ( RR 
i^i  RR )  =  RR
63 eqidd 2444 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  (
f `  x )  =  ( f `  x ) )
64 eqidd 2444 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  (
g `  x )  =  ( g `  x ) )
6555, 59, 61, 61, 62, 63, 64ofval 6332 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  (
( f  oF  +  g ) `  x )  =  ( ( f `  x
)  +  ( g `
 x ) ) )
6651, 65sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f  oF  +  g ) `  x
)  =  ( ( f `  x )  +  ( g `  x ) ) )
67 ffvelrn 5844 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : RR --> RR  /\  x  e.  RR )  ->  ( f `  x
)  e.  RR )
6853, 51, 67syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( f `  x )  e.  RR )
69 ffvelrn 5844 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( g : RR --> RR  /\  x  e.  RR )  ->  ( g `  x
)  e.  RR )
7057, 51, 69syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( g `  x )  e.  RR )
7168, 70readdcld 9416 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f `  x )  +  ( g `  x ) )  e.  RR )
7271rexrd 9436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f `  x )  +  ( g `  x ) )  e. 
RR* )
7372adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  e.  RR* )
7468adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
f `  x )  e.  RR )
7574rexrd 9436 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
f `  x )  e.  RR* )
76 iccssxr 11381 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0 [,] +oo )  C_  RR*
77 ffvelrn 5844 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( H : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( H `  x
)  e.  ( 0 [,] +oo ) )
7827, 51, 77syl2an 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( H `  x )  e.  ( 0 [,] +oo )
)
7976, 78sseldi 3357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( H `  x )  e.  RR* )
8079adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  ( H `  x )  e.  RR* )
8170adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
g `  x )  e.  RR )
82 0red 9390 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  0  e.  RR )
83 simprrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  g  oR  <_  G )
8460a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  g  Fn  RR )  ->  RR  e.  _V )
85 fvex 5704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( g `
 x )  e. 
_V
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  g  Fn  RR )  /\  x  e.  RR )  ->  (
g `  x )  e.  _V )
87 ssun2 3523 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  B  C_  ( A  u.  B
)
8887, 4syl5sseqr 3408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ph  ->  B  C_  U )
8988sselda 3359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  U )
9089adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  B )  ->  x  e.  U )
9190, 13syldan 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  B )  ->  C  e.  ( 0 [,] +oo ) )
9214a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,] +oo ) )
9391, 92ifclda 3824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  B ,  C ,  0 )  e.  ( 0 [,] +oo ) )
9493adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  g  Fn  RR )  /\  x  e.  RR )  ->  if ( x  e.  B ,  C ,  0 )  e.  ( 0 [,] +oo ) )
95 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  g  Fn  RR )  ->  g  Fn  RR )
96 dffn5 5740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( g  Fn  RR  <->  g  =  ( x  e.  RR  |->  ( g `  x
) ) )
9795, 96sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  g  Fn  RR )  ->  g  =  ( x  e.  RR  |->  ( g `  x
) ) )
987a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  g  Fn  RR )  ->  G  =  ( x  e.  RR  |->  if ( x  e.  B ,  C ,  0 ) ) )
9984, 86, 94, 97, 98ofrfval2 6340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  g  Fn  RR )  ->  ( g  oR  <_  G  <->  A. x  e.  RR  (
g `  x )  <_  if ( x  e.  B ,  C , 
0 ) ) )
10059, 99syldan 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( g  oR  <_  G  <->  A. x  e.  RR  ( g `  x )  <_  if ( x  e.  B ,  C ,  0 ) ) )
10183, 100mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  A. x  e.  RR  ( g `  x
)  <_  if (
x  e.  B ,  C ,  0 ) )
102101r19.21bi 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  (
g `  x )  <_  if ( x  e.  B ,  C , 
0 ) )
10351, 102sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( g `  x )  <_  if ( x  e.  B ,  C ,  0 ) )
104103adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
g `  x )  <_  if ( x  e.  B ,  C , 
0 ) )
105 eldifn 3482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  ( RR  \ 
( A  i^i  B
) )  ->  -.  x  e.  ( A  i^i  B ) )
106105adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  -.  x  e.  ( A  i^i  B
) )
107 elin 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
108106, 107sylnib 304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  -.  (
x  e.  A  /\  x  e.  B )
)
109 imnan 422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  -.  ( x  e.  A  /\  x  e.  B ) )
110108, 109sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( x  e.  A  ->  -.  x  e.  B ) )
111110imp 429 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  -.  x  e.  B )
112 iffalse 3802 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  C ,  0 )  =  0 )
113111, 112syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  if ( x  e.  B ,  C ,  0 )  =  0 )
114104, 113breqtrd 4319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
g `  x )  <_  0 )
11581, 82, 74, 114leadd2dd 9957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( ( f `
 x )  +  0 ) )
11674recnd 9415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
f `  x )  e.  CC )
117116addid1d 9572 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
( f `  x
)  +  0 )  =  ( f `  x ) )
118115, 117breqtrd 4319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( f `  x ) )
119 simprlr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  f  oR  <_  F )
12060a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  f  Fn  RR )  ->  RR  e.  _V )
121 fvex 5704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f `
 x )  e. 
_V
122121a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  f  Fn  RR )  /\  x  e.  RR )  ->  (
f `  x )  e.  _V )
123 ssun1 3522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  A  C_  ( A  u.  B
)
124123, 4syl5sseqr 3408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  A  C_  U )
125124sselda 3359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U )
126125adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  x  e.  U )
127126, 13syldan 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  x  e.  RR )  /\  x  e.  A )  ->  C  e.  ( 0 [,] +oo ) )
12814a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
129127, 128ifclda 3824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  C ,  0 )  e.  ( 0 [,] +oo ) )
130129adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  f  Fn  RR )  /\  x  e.  RR )  ->  if ( x  e.  A ,  C ,  0 )  e.  ( 0 [,] +oo ) )
131 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  f  Fn  RR )  ->  f  Fn  RR )
132 dffn5 5740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f  Fn  RR  <->  f  =  ( x  e.  RR  |->  ( f `  x
) ) )
133131, 132sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  f  Fn  RR )  ->  f  =  ( x  e.  RR  |->  ( f `  x
) ) )
1346a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  f  Fn  RR )  ->  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  C ,  0 ) ) )
135120, 122, 130, 133, 134ofrfval2 6340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  f  Fn  RR )  ->  ( f  oR  <_  F  <->  A. x  e.  RR  (
f `  x )  <_  if ( x  e.  A ,  C , 
0 ) ) )
13655, 135syldan 470 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( f  oR  <_  F  <->  A. x  e.  RR  ( f `  x )  <_  if ( x  e.  A ,  C ,  0 ) ) )
137119, 136mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  A. x  e.  RR  ( f `  x
)  <_  if (
x  e.  A ,  C ,  0 ) )
138137r19.21bi 2817 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  (
f `  x )  <_  if ( x  e.  A ,  C , 
0 ) )
13951, 138sylan2 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( f `  x )  <_  if ( x  e.  A ,  C ,  0 ) )
140139adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
f `  x )  <_  if ( x  e.  A ,  C , 
0 ) )
141124ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  A  C_  U
)
142141sselda 3359 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  x  e.  U )
143 iftrue 3800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  U  ->  if ( x  e.  U ,  C ,  0 )  =  C )
144142, 143syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  if ( x  e.  U ,  C ,  0 )  =  C )
145 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  x  e.  RR )
14616adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  if ( x  e.  U ,  C ,  0 )  e.  ( 0 [,] +oo ) )
1478fvmpt2 5784 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  RR  /\  if ( x  e.  U ,  C ,  0 )  e.  ( 0 [,] +oo ) )  ->  ( H `  x )  =  if ( x  e.  U ,  C , 
0 ) )
148145, 146, 147syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  RR )  ->  ( H `  x )  =  if ( x  e.  U ,  C , 
0 ) )
14951, 148sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( H `  x )  =  if ( x  e.  U ,  C ,  0 ) )
150149adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  ( H `  x )  =  if ( x  e.  U ,  C , 
0 ) )
151 iftrue 3800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  C )
152151adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  if ( x  e.  A ,  C ,  0 )  =  C )
153144, 150, 1523eqtr4d 2485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  ( H `  x )  =  if ( x  e.  A ,  C , 
0 ) )
154140, 153breqtrrd 4321 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
f `  x )  <_  ( H `  x
) )
15573, 75, 80, 118, 154xrletrd 11139 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( H `  x ) )
15672adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  e.  RR* )
15770adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
g `  x )  e.  RR )
158157rexrd 9436 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
g `  x )  e.  RR* )
15979adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  ( H `  x )  e.  RR* )
16068adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
f `  x )  e.  RR )
161 0red 9390 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  0  e.  RR )
162139adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
f `  x )  <_  if ( x  e.  A ,  C , 
0 ) )
163 iffalse 3802 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  C ,  0 )  =  0 )
164163adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  C ,  0 )  =  0 )
165162, 164breqtrd 4319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
f `  x )  <_  0 )
166160, 161, 157, 165leadd1dd 9956 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( 0  +  ( g `  x
) ) )
167157recnd 9415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
g `  x )  e.  CC )
168167addid2d 9573 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
0  +  ( g `
 x ) )  =  ( g `  x ) )
169166, 168breqtrd 4319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( g `  x ) )
170103adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
g `  x )  <_  if ( x  e.  B ,  C , 
0 ) )
171149adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  ( H `  x )  =  if ( x  e.  U ,  C , 
0 ) )
1724ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  U  =  ( A  u.  B ) )
173172eleq2d 2510 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
x  e.  U  <->  x  e.  ( A  u.  B
) ) )
174 biorf 405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -.  x  e.  A  -> 
( x  e.  B  <->  ( x  e.  A  \/  x  e.  B )
) )
175 elun 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
176174, 175syl6rbbr 264 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -.  x  e.  A  -> 
( x  e.  ( A  u.  B )  <-> 
x  e.  B ) )
177176adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
x  e.  ( A  u.  B )  <->  x  e.  B ) )
178173, 177bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
x  e.  U  <->  x  e.  B ) )
179178ifbid 3814 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  if ( x  e.  U ,  C ,  0 )  =  if ( x  e.  B ,  C ,  0 ) )
180171, 179eqtrd 2475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  ( H `  x )  =  if ( x  e.  B ,  C , 
0 ) )
181170, 180breqtrrd 4321 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
g `  x )  <_  ( H `  x
) )
182156, 158, 159, 169, 181xrletrd 11139 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( f  e. 
dom  S.1  /\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  /\  -.  x  e.  A )  ->  (
( f `  x
)  +  ( g `
 x ) )  <_  ( H `  x ) )
183155, 182pm2.61dan 789 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f `  x )  +  ( g `  x ) )  <_ 
( H `  x
) )
18466, 183eqbrtrd 4315 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  x  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f  oF  +  g ) `  x
)  <_  ( H `  x ) )
185184ex 434 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( x  e.  ( RR  \  ( A  i^i  B ) )  ->  ( ( f  oF  +  g ) `  x )  <_  ( H `  x ) ) )
18650, 185ralrimi 2800 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  A. x  e.  ( RR  \  ( A  i^i  B ) ) ( ( f  oF  +  g ) `
 x )  <_ 
( H `  x
) )
187 nfv 1673 . . . . . . . . . . . . . . . . 17  |-  F/ y ( ( f  oF  +  g ) `
 x )  <_ 
( H `  x
)
188 nfcv 2582 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
( ( f  oF  +  g ) `
 y )
189 nfcv 2582 . . . . . . . . . . . . . . . . . 18  |-  F/_ x  <_
190 nfmpt1 4384 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x
( x  e.  RR  |->  if ( x  e.  U ,  C ,  0 ) )
1918, 190nfcxfr 2579 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x H
192 nfcv 2582 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
y
193191, 192nffv 5701 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
( H `  y
)
194188, 189, 193nfbr 4339 . . . . . . . . . . . . . . . . 17  |-  F/ x
( ( f  oF  +  g ) `
 y )  <_ 
( H `  y
)
195 fveq2 5694 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( f  oF  +  g ) `  x )  =  ( ( f  oF  +  g ) `  y ) )
196 fveq2 5694 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
197195, 196breq12d 4308 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( ( f  oF  +  g ) `
 x )  <_ 
( H `  x
)  <->  ( ( f  oF  +  g ) `  y )  <_  ( H `  y ) ) )
198187, 194, 197cbvral 2946 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  ( RR  \  ( A  i^i  B
) ) ( ( f  oF  +  g ) `  x
)  <_  ( H `  x )  <->  A. y  e.  ( RR  \  ( A  i^i  B ) ) ( ( f  oF  +  g ) `
 y )  <_ 
( H `  y
) )
199186, 198sylib 196 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  A. y  e.  ( RR  \  ( A  i^i  B ) ) ( ( f  oF  +  g ) `
 y )  <_ 
( H `  y
) )
200199r19.21bi 2817 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  F )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) ) )  /\  y  e.  ( RR  \  ( A  i^i  B ) ) )  ->  ( (
f  oF  +  g ) `  y
)  <_  ( H `  y ) )
20127, 28, 33, 34, 200itg2uba 21224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.1 `  (
f  oF  +  g ) )  <_ 
( S.2 `  H ) )
20226, 201eqbrtrrd 4317 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( ( S.1 `  f )  +  ( S.1 `  g ) )  <_  ( S.2 `  H ) )
20323adantrr 716 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.1 `  f
)  e.  RR )
204 itg1cl 21166 . . . . . . . . . . . . . 14  |-  ( g  e.  dom  S.1  ->  ( S.1 `  g )  e.  RR )
20525, 204syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.1 `  g
)  e.  RR )
20620adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.2 `  H
)  e.  RR )
207203, 205, 206leaddsub2d 9944 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( ( ( S.1 `  f )  +  ( S.1 `  g
) )  <_  ( S.2 `  H )  <->  ( S.1 `  g )  <_  (
( S.2 `  H )  -  ( S.1 `  f
) ) ) )
208202, 207mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  F )  /\  (
g  e.  dom  S.1  /\  g  oR  <_  G ) ) )  ->  ( S.1 `  g
)  <_  ( ( S.2 `  H )  -  ( S.1 `  f ) ) )
209208anassrs 648 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  F ) )  /\  ( g  e.  dom  S.1 
/\  g  oR  <_  G ) )  ->  ( S.1 `  g
)  <_  ( ( S.2 `  H )  -  ( S.1 `  f ) ) )
210209expr 615 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  dom  S.1  /\  f  oR  <_  F ) )  /\  g  e.  dom  S.1 )  ->  ( g  oR  <_  G  ->  ( S.1 `  g )  <_ 
( ( S.2 `  H
)  -  ( S.1 `  f ) ) ) )
211210ralrimiva 2802 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  A. g  e.  dom  S.1 ( g  oR  <_  G  ->  ( S.1 `  g )  <_  ( ( S.2 `  H )  -  ( S.1 `  f ) ) ) )
21293, 7fmptd 5870 . . . . . . . . . 10  |-  ( ph  ->  G : RR --> ( 0 [,] +oo ) )
213212adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  G : RR
--> ( 0 [,] +oo ) )
21421, 23resubcld 9779 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( ( S.2 `  H )  -  ( S.1 `  f ) )  e.  RR )
215214rexrd 9436 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( ( S.2 `  H )  -  ( S.1 `  f ) )  e.  RR* )
216 itg2leub 21215 . . . . . . . . 9  |-  ( ( G : RR --> ( 0 [,] +oo )  /\  ( ( S.2 `  H
)  -  ( S.1 `  f ) )  e. 
RR* )  ->  (
( S.2 `  G )  <_  ( ( S.2 `  H )  -  ( S.1 `  f ) )  <->  A. g  e.  dom  S.1 ( g  oR  <_  G  ->  ( S.1 `  g )  <_ 
( ( S.2 `  H
)  -  ( S.1 `  f ) ) ) ) )
217213, 215, 216syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( ( S.2 `  G )  <_ 
( ( S.2 `  H
)  -  ( S.1 `  f ) )  <->  A. g  e.  dom  S.1 ( g  oR  <_  G  ->  ( S.1 `  g )  <_  ( ( S.2 `  H )  -  ( S.1 `  f ) ) ) ) )
218211, 217mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( S.2 `  G )  <_  (
( S.2 `  H )  -  ( S.1 `  f
) ) )
21912, 21, 23, 218lesubd 9946 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  F ) )  ->  ( S.1 `  f )  <_  (
( S.2 `  H )  -  ( S.2 `  G
) ) )
220219expr 615 . . . . 5  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  F  ->  ( S.1 `  f
)  <_  ( ( S.2 `  H )  -  ( S.2 `  G ) ) ) )
221220ralrimiva 2802 . . . 4  |-  ( ph  ->  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_ 
( ( S.2 `  H
)  -  ( S.2 `  G ) ) ) )
222129, 6fmptd 5870 . . . . 5  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
22320, 10resubcld 9779 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  H
)  -  ( S.2 `  G ) )  e.  RR )
224223rexrd 9436 . . . . 5  |-  ( ph  ->  ( ( S.2 `  H
)  -  ( S.2 `  G ) )  e. 
RR* )
225 itg2leub 21215 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( ( S.2 `  H
)  -  ( S.2 `  G ) )  e. 
RR* )  ->  (
( S.2 `  F )  <_  ( ( S.2 `  H )  -  ( S.2 `  G ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_ 
( ( S.2 `  H
)  -  ( S.2 `  G ) ) ) ) )
226222, 224, 225syl2anc 661 . . . 4  |-  ( ph  ->  ( ( S.2 `  F
)  <_  ( ( S.2 `  H )  -  ( S.2 `  G ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_ 
( ( S.2 `  H
)  -  ( S.2 `  G ) ) ) ) )
227221, 226mpbird 232 . . 3  |-  ( ph  ->  ( S.2 `  F
)  <_  ( ( S.2 `  H )  -  ( S.2 `  G ) ) )
228 leaddsub 9818 . . . 4  |-  ( ( ( S.2 `  F
)  e.  RR  /\  ( S.2 `  G )  e.  RR  /\  ( S.2 `  H )  e.  RR )  ->  (
( ( S.2 `  F
)  +  ( S.2 `  G ) )  <_ 
( S.2 `  H )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  H )  -  ( S.2 `  G ) ) ) )
2299, 10, 20, 228syl3anc 1218 . . 3  |-  ( ph  ->  ( ( ( S.2 `  F )  +  ( S.2 `  G ) )  <_  ( S.2 `  H )  <->  ( S.2 `  F )  <_  (
( S.2 `  H )  -  ( S.2 `  G
) ) ) )
230227, 229mpbird 232 . 2  |-  ( ph  ->  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  <_ 
( S.2 `  H ) )
231 itg2cl 21213 . . . 4  |-  ( H : RR --> ( 0 [,] +oo )  -> 
( S.2 `  H )  e.  RR* )
23217, 231syl 16 . . 3  |-  ( ph  ->  ( S.2 `  H
)  e.  RR* )
23318rexrd 9436 . . 3  |-  ( ph  ->  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  e. 
RR* )
234 xrletri3 11132 . . 3  |-  ( ( ( S.2 `  H
)  e.  RR*  /\  (
( S.2 `  F )  +  ( S.2 `  G
) )  e.  RR* )  ->  ( ( S.2 `  H )  =  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  <->  ( ( S.2 `  H )  <_ 
( ( S.2 `  F
)  +  ( S.2 `  G ) )  /\  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  <_ 
( S.2 `  H ) ) ) )
235232, 233, 234syl2anc 661 . 2  |-  ( ph  ->  ( ( S.2 `  H
)  =  ( ( S.2 `  F )  +  ( S.2 `  G
) )  <->  ( ( S.2 `  H )  <_ 
( ( S.2 `  F
)  +  ( S.2 `  G ) )  /\  ( ( S.2 `  F
)  +  ( S.2 `  G ) )  <_ 
( S.2 `  H ) ) ) )
23611, 230, 235mpbir2and 913 1  |-  ( ph  ->  ( S.2 `  H
)  =  ( ( S.2 `  F )  +  ( S.2 `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   _Vcvv 2975    \ cdif 3328    u. cun 3329    i^i cin 3330    C_ wss 3331   ifcif 3794   class class class wbr 4295    e. cmpt 4353   dom cdm 4843    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094    oFcof 6321    oRcofr 6322   RRcr 9284   0cc0 9285    + caddc 9288   +oocpnf 9418   RR*cxr 9420    <_ cle 9422    - cmin 9598   [,]cicc 11306   vol*covol 20949   volcvol 20950   S.1citg1 21098   S.2citg2 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104
This theorem is referenced by:  itg2cnlem2  21243  itgsplit  21316
  Copyright terms: Public domain W3C validator