MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Unicode version

Theorem itg2mono 21190
Description: The Monotone Convergence Theorem for nonnegative functions. If  { ( F `
 n ) : n  e.  NN } is a monotone increasing sequence of positive, measurable, real-valued functions, and  G is the pointwise limit of the sequence, then  ( S.2 `  G
) is the limit of the sequence  { ( S.2 `  ( F `  n
) ) : n  e.  NN }. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
itg2mono.2  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
itg2mono.3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
itg2mono.4  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
itg2mono.5  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
itg2mono.6  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
Assertion
Ref Expression
itg2mono  |-  ( ph  ->  ( S.2 `  G
)  =  S )
Distinct variable groups:    x, n, y, G    n, F, x, y    ph, n, x, y    S, n, x, y

Proof of Theorem itg2mono
Dummy variables  f  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . 8  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
2 itg2mono.2 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
32adantlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
4 itg2mono.3 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
54adantlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
6 itg2mono.4 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
76adantlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
8 itg2mono.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
98adantlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
10 itg2mono.6 . . . . . . . 8  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
11 simprll 756 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  f  e.  dom  S.1 )
12 simprlr 757 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  f  oR  <_  G )
13 simprr 751 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  -.  ( S.1 `  f )  <_  S
)
141, 3, 5, 7, 9, 10, 11, 12, 13itg2monolem3 21189 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  ( S.1 `  f
)  <_  S )
1514expr 612 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  G ) )  ->  ( -.  ( S.1 `  f )  <_  S  ->  ( S.1 `  f )  <_  S ) )
1615pm2.18d 111 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  G ) )  ->  ( S.1 `  f )  <_  S
)
1716expr 612 . . . 4  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  G  ->  ( S.1 `  f
)  <_  S )
)
1817ralrimiva 2797 . . 3  |-  ( ph  ->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) )
19 0re 9382 . . . . . . . . . . . . . 14  |-  0  e.  RR
20 pnfxr 11088 . . . . . . . . . . . . . 14  |- +oo  e.  RR*
21 icossre 11372 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
2219, 20, 21mp2an 667 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  C_  RR
23 fss 5564 . . . . . . . . . . . . 13  |-  ( ( ( F `  n
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  -> 
( F `  n
) : RR --> RR )
244, 22, 23sylancl 657 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> RR )
2524ffvelrnda 5840 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  (
( F `  n
) `  x )  e.  RR )
2625an32s 797 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  (
( F `  n
) `  x )  e.  RR )
27 eqid 2441 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )
2826, 27fmptd 5864 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) : NN --> RR )
29 frn 5562 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) : NN --> RR  ->  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR )
3028, 29syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  C_  RR )
31 1nn 10329 . . . . . . . . . . 11  |-  1  e.  NN
32 fdm 5560 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) : NN --> RR  ->  dom  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =  NN )
3328, 32syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =  NN )
3431, 33syl5eleqr 2528 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  1  e. 
dom  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
35 ne0i 3640 . . . . . . . . . 10  |-  ( 1  e.  dom  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  ->  dom  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/) )
3634, 35syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/) )
37 dm0rn0 5052 . . . . . . . . . 10  |-  ( dom  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =  (/)  <->  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =  (/) )
3837necon3bii 2638 . . . . . . . . 9  |-  ( dom  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =/=  (/)  <->  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =/=  (/) )
3936, 38sylib 196 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/) )
40 ffn 5556 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) : NN --> RR  ->  ( n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN )
4128, 40syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  Fn  NN )
42 breq1 4292 . . . . . . . . . . . . 13  |-  ( z  =  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y )
)
4342ralrn 5843 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) z  <_ 
y  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) `  m )  <_  y
) )
4441, 43syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  <_ 
y ) )
45 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
4645fveq1d 5690 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( F `  n
) `  x )  =  ( ( F `
 m ) `  x ) )
47 fvex 5698 . . . . . . . . . . . . . . 15  |-  ( ( F `  m ) `
 x )  e. 
_V
4846, 27, 47fvmpt 5771 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  =  ( ( F `  m ) `
 x ) )
4948breq1d 4299 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) `  m )  <_  y  <->  ( ( F `  m
) `  x )  <_  y ) )
5049ralbiia 2745 . . . . . . . . . . . 12  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y  <->  A. m  e.  NN  ( ( F `
 m ) `  x )  <_  y
)
5146breq1d 4299 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( ( F `  n ) `  x
)  <_  y  <->  ( ( F `  m ) `  x )  <_  y
) )
5251cbvralv 2945 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  (
( F `  n
) `  x )  <_  y  <->  A. m  e.  NN  ( ( F `  m ) `  x
)  <_  y )
5350, 52bitr4i 252 . . . . . . . . . . 11  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y  <->  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
5444, 53syl6bb 261 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
) )
5554rexbidv 2734 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
) )
568, 55mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )
57 suprcl 10286 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  C_  RR  /\  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  RR )
5830, 39, 56, 57syl3anc 1213 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR )
5958rexrd 9429 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR* )
60 0red 9383 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  0  e.  RR )
614ralrimiva 2797 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo ) )
62 fveq2 5688 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
6362feq1d 5543 . . . . . . . . . . . 12  |-  ( n  =  1  ->  (
( F `  n
) : RR --> ( 0 [,) +oo )  <->  ( F `  1 ) : RR --> ( 0 [,) +oo ) ) )
6463rspcv 3066 . . . . . . . . . . 11  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo )  -> 
( F `  1
) : RR --> ( 0 [,) +oo ) ) )
6531, 61, 64mpsyl 63 . . . . . . . . . 10  |-  ( ph  ->  ( F `  1
) : RR --> ( 0 [,) +oo ) )
6665ffvelrnda 5840 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e.  ( 0 [,) +oo ) )
67 elrege0 11388 . . . . . . . . 9  |-  ( ( ( F `  1
) `  x )  e.  ( 0 [,) +oo ) 
<->  ( ( ( F `
 1 ) `  x )  e.  RR  /\  0  <_  ( ( F `  1 ) `  x ) ) )
6866, 67sylib 196 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( F `  1
) `  x )  e.  RR  /\  0  <_ 
( ( F ` 
1 ) `  x
) ) )
6968simpld 456 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e.  RR )
7068simprd 460 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( F ` 
1 ) `  x
) )
7162fveq1d 5690 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( F `  n
) `  x )  =  ( ( F `
 1 ) `  x ) )
72 fvex 5698 . . . . . . . . . . 11  |-  ( ( F `  1 ) `
 x )  e. 
_V
7371, 27, 72fvmpt 5771 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  1
)  =  ( ( F `  1 ) `
 x ) )
7431, 73ax-mp 5 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) `  1 )  =  ( ( F `
 1 ) `  x )
75 fnfvelrn 5837 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  Fn  NN  /\  1  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 1 )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
7641, 31, 75sylancl 657 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) `  1 )  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
7774, 76syl5eqelr 2526 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
78 suprub 10287 . . . . . . . 8  |-  ( ( ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  /\  ( ( F ` 
1 ) `  x
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )  ->  (
( F `  1
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
7930, 39, 56, 77, 78syl31anc 1216 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
8060, 69, 58, 70, 79letrd 9524 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
81 elxrge0 11390 . . . . . 6  |-  ( sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  ( 0 [,] +oo )  <->  ( sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR*  /\  0  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  ) ) )
8259, 80, 81sylanbrc 659 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  ( 0 [,] +oo )
)
8382, 1fmptd 5864 . . . 4  |-  ( ph  ->  G : RR --> ( 0 [,] +oo ) )
84 rexr 9425 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  x  e.  RR* )
8584anim1i 565 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( x  e.  RR*  /\  0  <_  x )
)
86 elrege0 11388 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
87 elxrge0 11390 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,] +oo )  <->  ( x  e. 
RR*  /\  0  <_  x ) )
8885, 86, 873imtr4i 266 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,) +oo )  ->  x  e.  ( 0 [,] +oo ) )
8988ssriv 3357 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
90 fss 5564 . . . . . . . . . 10  |-  ( ( ( F `  n
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  ( F `  n ) : RR --> ( 0 [,] +oo ) )
914, 89, 90sylancl 657 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,] +oo ) )
92 itg2cl 21169 . . . . . . . . 9  |-  ( ( F `  n ) : RR --> ( 0 [,] +oo )  -> 
( S.2 `  ( F `
 n ) )  e.  RR* )
9391, 92syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( F `  n
) )  e.  RR* )
94 eqid 2441 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) )  =  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )
9593, 94fmptd 5864 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR* )
96 frn 5562 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR* )
9795, 96syl 16 . . . . . 6  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR* )
98 supxrcl 11273 . . . . . 6  |-  ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR*  ->  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) ,  RR* ,  <  )  e.  RR* )
9997, 98syl 16 . . . . 5  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  e.  RR* )
10010, 99syl5eqel 2525 . . . 4  |-  ( ph  ->  S  e.  RR* )
101 itg2leub 21171 . . . 4  |-  ( ( G : RR --> ( 0 [,] +oo )  /\  S  e.  RR* )  -> 
( ( S.2 `  G
)  <_  S  <->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) ) )
10283, 100, 101syl2anc 656 . . 3  |-  ( ph  ->  ( ( S.2 `  G
)  <_  S  <->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) ) )
10318, 102mpbird 232 . 2  |-  ( ph  ->  ( S.2 `  G
)  <_  S )
10445feq1d 5543 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( F `  n
) : RR --> ( 0 [,) +oo )  <->  ( F `  m ) : RR --> ( 0 [,) +oo ) ) )
105104cbvralv 2945 . . . . . . . . . 10  |-  ( A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo )  <->  A. m  e.  NN  ( F `  m ) : RR --> ( 0 [,) +oo ) )
10661, 105sylib 196 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  NN  ( F `  m ) : RR --> ( 0 [,) +oo ) )
107106r19.21bi 2812 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m ) : RR --> ( 0 [,) +oo ) )
108 fss 5564 . . . . . . . 8  |-  ( ( ( F `  m
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  ( F `  m ) : RR --> ( 0 [,] +oo ) )
109107, 89, 108sylancl 657 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m ) : RR --> ( 0 [,] +oo ) )
11083adantr 462 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  G : RR
--> ( 0 [,] +oo ) )
11130, 39, 563jca 1163 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR  /\ 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y ) )
112111adantlr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR  /\ 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y ) )
11348ad2antlr 721 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  =  ( ( F `  m ) `
 x ) )
11441adantlr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN )
115 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  m  e.  NN )
116 fnfvelrn 5837 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  Fn  NN  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
117114, 115, 116syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )
118113, 117eqeltrrd 2516 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
119 suprub 10287 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  /\  ( ( F `  m ) `  x
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )  ->  (
( F `  m
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
120112, 118, 119syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
121 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  x  e.  RR )
122 ltso 9451 . . . . . . . . . . . . 13  |-  <  Or  RR
123122supex 7709 . . . . . . . . . . . 12  |-  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  _V
1241fvmpt2 5778 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  ) )
125121, 123, 124sylancl 657 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( G `  x )  =  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
126120, 125breqtrrd 4315 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  <_  ( G `  x
) )
127126ralrimiva 2797 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  ( ( F `
 m ) `  x )  <_  ( G `  x )
)
128 fveq2 5688 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( F `  m
) `  x )  =  ( ( F `
 m ) `  z ) )
129 fveq2 5688 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
130128, 129breq12d 4302 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( ( F `  m ) `  x
)  <_  ( G `  x )  <->  ( ( F `  m ) `  z )  <_  ( G `  z )
) )
131130cbvralv 2945 . . . . . . . . 9  |-  ( A. x  e.  RR  (
( F `  m
) `  x )  <_  ( G `  x
)  <->  A. z  e.  RR  ( ( F `  m ) `  z
)  <_  ( G `  z ) )
132127, 131sylib 196 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  A. z  e.  RR  ( ( F `
 m ) `  z )  <_  ( G `  z )
)
133 ffn 5556 . . . . . . . . . 10  |-  ( ( F `  m ) : RR --> ( 0 [,] +oo )  -> 
( F `  m
)  Fn  RR )
134109, 133syl 16 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  Fn  RR )
13558, 1fmptd 5864 . . . . . . . . . . 11  |-  ( ph  ->  G : RR --> RR )
136 ffn 5556 . . . . . . . . . . 11  |-  ( G : RR --> RR  ->  G  Fn  RR )
137135, 136syl 16 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  RR )
138137adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  G  Fn  RR )
139 reex 9369 . . . . . . . . . 10  |-  RR  e.  _V
140139a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
141 inidm 3556 . . . . . . . . 9  |-  ( RR 
i^i  RR )  =  RR
142 eqidd 2442 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  z  e.  RR )  ->  (
( F `  m
) `  z )  =  ( ( F `
 m ) `  z ) )
143 eqidd 2442 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  z  e.  RR )  ->  ( G `  z )  =  ( G `  z ) )
144134, 138, 140, 140, 141, 142, 143ofrfval 6327 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( F `  m )  oR  <_  G  <->  A. z  e.  RR  (
( F `  m
) `  z )  <_  ( G `  z
) ) )
145132, 144mpbird 232 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  oR  <_  G )
146 itg2le 21176 . . . . . . 7  |-  ( ( ( F `  m
) : RR --> ( 0 [,] +oo )  /\  G : RR --> ( 0 [,] +oo )  /\  ( F `  m )  oR  <_  G
)  ->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) )
147109, 110, 145, 146syl3anc 1213 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) )
148147ralrimiva 2797 . . . . 5  |-  ( ph  ->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) )
149 ffn 5556 . . . . . . . 8  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
15095, 149syl 16 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
151 breq1 4292 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) `  m )  ->  (
z  <_  ( S.2 `  G )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  <_  ( S.2 `  G
) ) )
152151ralrn 5843 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) `  m )  <_  ( S.2 `  G ) ) )
153150, 152syl 16 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) z  <_ 
( S.2 `  G )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  m
)  <_  ( S.2 `  G ) ) )
15445fveq2d 5692 . . . . . . . . 9  |-  ( n  =  m  ->  ( S.2 `  ( F `  n ) )  =  ( S.2 `  ( F `  m )
) )
155 fvex 5698 . . . . . . . . 9  |-  ( S.2 `  ( F `  m
) )  e.  _V
156154, 94, 155fvmpt 5771 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  =  ( S.2 `  ( F `  m )
) )
157156breq1d 4299 . . . . . . 7  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  m
)  <_  ( S.2 `  G )  <->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) ) )
158157ralbiia 2745 . . . . . 6  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  <_  ( S.2 `  G
)  <->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) )
159153, 158syl6bb 261 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) z  <_ 
( S.2 `  G )  <->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) ) )
160148, 159mpbird 232 . . . 4  |-  ( ph  ->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) )
161 itg2cl 21169 . . . . . 6  |-  ( G : RR --> ( 0 [,] +oo )  -> 
( S.2 `  G )  e.  RR* )
16283, 161syl 16 . . . . 5  |-  ( ph  ->  ( S.2 `  G
)  e.  RR* )
163 supxrleub 11285 . . . . 5  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR*  /\  ( S.2 `  G )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  G )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) ) )
16497, 162, 163syl2anc 656 . . . 4  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  G
)  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) ) )
165160, 164mpbird 232 . . 3  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  G
) )
16610, 165syl5eqbr 4322 . 2  |-  ( ph  ->  S  <_  ( S.2 `  G ) )
167 xrletri3 11125 . . 3  |-  ( ( ( S.2 `  G
)  e.  RR*  /\  S  e.  RR* )  ->  (
( S.2 `  G )  =  S  <->  ( ( S.2 `  G )  <_  S  /\  S  <_  ( S.2 `  G ) ) ) )
168162, 100, 167syl2anc 656 . 2  |-  ( ph  ->  ( ( S.2 `  G
)  =  S  <->  ( ( S.2 `  G )  <_  S  /\  S  <_  ( S.2 `  G ) ) ) )
169103, 166, 168mpbir2and 908 1  |-  ( ph  ->  ( S.2 `  G
)  =  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    C_ wss 3325   (/)c0 3634   class class class wbr 4289    e. cmpt 4347   dom cdm 4836   ran crn 4837    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    oRcofr 6318   supcsup 7686   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   +oocpnf 9411   RR*cxr 9413    < clt 9414    <_ cle 9415   NNcn 10318   [,)cico 11298   [,]cicc 11299  MblFncmbf 21053   S.1citg1 21054   S.2citg2 21055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-rest 14357  df-topgen 14378  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-top 18462  df-bases 18464  df-topon 18465  df-cmp 18949  df-ovol 20907  df-vol 20908  df-mbf 21058  df-itg1 21059  df-itg2 21060
This theorem is referenced by:  itg2i1fseq  21192  itg2cnlem1  21198
  Copyright terms: Public domain W3C validator