MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Unicode version

Theorem itg2i1fseq 22456
Description: Subject to the conditions coming from mbfi1fseq 22422, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1  |-  ( ph  ->  F  e. MblFn )
itg2i1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2i1fseq.3  |-  ( ph  ->  P : NN --> dom  S.1 )
itg2i1fseq.4  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) ) )
itg2i1fseq.5  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
itg2i1fseq.6  |-  S  =  ( m  e.  NN  |->  ( S.1 `  ( P `
 m ) ) )
Assertion
Ref Expression
itg2i1fseq  |-  ( ph  ->  ( S.2 `  F
)  =  sup ( ran  S ,  RR* ,  <  ) )
Distinct variable groups:    m, n, x, F    P, m, n, x    ph, m
Allowed substitution hints:    ph( x, n)    S( x, m, n)

Proof of Theorem itg2i1fseq
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5851 . . . . . . . . 9  |-  ( n  =  m  ->  ( P `  n )  =  ( P `  m ) )
21fveq1d 5853 . . . . . . . 8  |-  ( n  =  m  ->  (
( P `  n
) `  x )  =  ( ( P `
 m ) `  x ) )
32cbvmptv 4489 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 x ) )  =  ( m  e.  NN  |->  ( ( P `
 m ) `  x ) )
4 fveq2 5851 . . . . . . . 8  |-  ( x  =  y  ->  (
( P `  m
) `  x )  =  ( ( P `
 m ) `  y ) )
54mpteq2dv 4484 . . . . . . 7  |-  ( x  =  y  ->  (
m  e.  NN  |->  ( ( P `  m
) `  x )
)  =  ( m  e.  NN  |->  ( ( P `  m ) `
 y ) ) )
63, 5syl5eq 2457 . . . . . 6  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  =  ( m  e.  NN  |->  ( ( P `  m ) `
 y ) ) )
76rneqd 5053 . . . . 5  |-  ( x  =  y  ->  ran  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  =  ran  ( m  e.  NN  |->  ( ( P `  m ) `  y
) ) )
87supeq1d 7941 . . . 4  |-  ( x  =  y  ->  sup ( ran  ( n  e.  NN  |->  ( ( P `
 n ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  (
m  e.  NN  |->  ( ( P `  m
) `  y )
) ,  RR ,  <  ) )
98cbvmptv 4489 . . 3  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `  x
) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( P `  m ) `
 y ) ) ,  RR ,  <  ) )
10 itg2i1fseq.3 . . . . 5  |-  ( ph  ->  P : NN --> dom  S.1 )
1110ffvelrnda 6011 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m )  e. 
dom  S.1 )
12 i1fmbf 22376 . . . 4  |-  ( ( P `  m )  e.  dom  S.1  ->  ( P `  m )  e. MblFn )
1311, 12syl 17 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m )  e. MblFn
)
14 i1ff 22377 . . . . 5  |-  ( ( P `  m )  e.  dom  S.1  ->  ( P `  m ) : RR --> RR )
1511, 14syl 17 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m ) : RR --> RR )
16 itg2i1fseq.4 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) ) )
171breq2d 4409 . . . . . . . 8  |-  ( n  =  m  ->  (
0p  oR  <_  ( P `  n )  <->  0p  oR  <_  ( P `
 m ) ) )
18 oveq1 6287 . . . . . . . . . 10  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
1918fveq2d 5855 . . . . . . . . 9  |-  ( n  =  m  ->  ( P `  ( n  +  1 ) )  =  ( P `  ( m  +  1
) ) )
201, 19breq12d 4410 . . . . . . . 8  |-  ( n  =  m  ->  (
( P `  n
)  oR  <_ 
( P `  (
n  +  1 ) )  <->  ( P `  m )  oR  <_  ( P `  ( m  +  1
) ) ) )
2117, 20anbi12d 711 . . . . . . 7  |-  ( n  =  m  ->  (
( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) )  <-> 
( 0p  oR  <_  ( P `  m )  /\  ( P `  m )  oR  <_  ( P `
 ( m  + 
1 ) ) ) ) )
2221rspccva 3161 . . . . . 6  |-  ( ( A. n  e.  NN  ( 0p  oR  <_  ( P `  n )  /\  ( P `  n )  oR  <_  ( P `
 ( n  + 
1 ) ) )  /\  m  e.  NN )  ->  ( 0p  oR  <_  ( P `  m )  /\  ( P `  m
)  oR  <_ 
( P `  (
m  +  1 ) ) ) )
2316, 22sylan 471 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p  oR  <_ 
( P `  m
)  /\  ( P `  m )  oR  <_  ( P `  ( m  +  1
) ) ) )
2423simpld 459 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  0p  oR  <_  ( P `  m )
)
25 0plef 22373 . . . 4  |-  ( ( P `  m ) : RR --> ( 0 [,) +oo )  <->  ( ( P `  m ) : RR --> RR  /\  0p  oR  <_  ( P `  m )
) )
2615, 24, 25sylanbrc 664 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m ) : RR --> ( 0 [,) +oo ) )
2723simprd 463 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m )  oR  <_  ( P `  ( m  +  1 ) ) )
28 rge0ssre 11684 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
29 itg2i1fseq.2 . . . . . 6  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
3029ffvelrnda 6011 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  ( 0 [,) +oo ) )
3128, 30sseldi 3442 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
32 itg2i1fseq.1 . . . . . . . . 9  |-  ( ph  ->  F  e. MblFn )
33 itg2i1fseq.5 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x ) )
3432, 29, 10, 16, 33itg2i1fseqle 22455 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m )  oR  <_  F )
35 ffn 5716 . . . . . . . . . 10  |-  ( ( P `  m ) : RR --> RR  ->  ( P `  m )  Fn  RR )
3615, 35syl 17 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 m )  Fn  RR )
37 ffn 5716 . . . . . . . . . . 11  |-  ( F : RR --> ( 0 [,) +oo )  ->  F  Fn  RR )
3829, 37syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  RR )
3938adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  F  Fn  RR )
40 reex 9615 . . . . . . . . . 10  |-  RR  e.  _V
4140a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
42 inidm 3650 . . . . . . . . 9  |-  ( RR 
i^i  RR )  =  RR
43 eqidd 2405 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( P `  m
) `  y )  =  ( ( P `
 m ) `  y ) )
44 eqidd 2405 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
4536, 39, 41, 41, 42, 43, 44ofrfval 6531 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( P `  m )  oR  <_  F  <->  A. y  e.  RR  (
( P `  m
) `  y )  <_  ( F `  y
) ) )
4634, 45mpbid 212 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  A. y  e.  RR  ( ( P `
 m ) `  y )  <_  ( F `  y )
)
4746r19.21bi 2775 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( P `  m
) `  y )  <_  ( F `  y
) )
4847an32s 807 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( P `  m
) `  y )  <_  ( F `  y
) )
4948ralrimiva 2820 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  ( F `  y )
)
50 breq2 4401 . . . . . 6  |-  ( z  =  ( F `  y )  ->  (
( ( P `  m ) `  y
)  <_  z  <->  ( ( P `  m ) `  y )  <_  ( F `  y )
) )
5150ralbidv 2845 . . . . 5  |-  ( z  =  ( F `  y )  ->  ( A. m  e.  NN  ( ( P `  m ) `  y
)  <_  z  <->  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  ( F `  y )
) )
5251rspcev 3162 . . . 4  |-  ( ( ( F `  y
)  e.  RR  /\  A. m  e.  NN  (
( P `  m
) `  y )  <_  ( F `  y
) )  ->  E. z  e.  RR  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  z
)
5331, 49, 52syl2anc 661 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  E. z  e.  RR  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  z
)
541fveq2d 5855 . . . . . 6  |-  ( n  =  m  ->  ( S.2 `  ( P `  n ) )  =  ( S.2 `  ( P `  m )
) )
5554cbvmptv 4489 . . . . 5  |-  ( n  e.  NN  |->  ( S.2 `  ( P `  n
) ) )  =  ( m  e.  NN  |->  ( S.2 `  ( P `
 m ) ) )
5655rneqi 5052 . . . 4  |-  ran  (
n  e.  NN  |->  ( S.2 `  ( P `
 n ) ) )  =  ran  (
m  e.  NN  |->  ( S.2 `  ( P `
 m ) ) )
5756supeq1i 7942 . . 3  |-  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( P `
 n ) ) ) ,  RR* ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( S.2 `  ( P `
 m ) ) ) ,  RR* ,  <  )
589, 13, 26, 27, 53, 57itg2mono 22454 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `
 x ) ) ,  RR ,  <  ) ) )  =  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( P `  n )
) ) ,  RR* ,  <  ) )
5929feqmptd 5904 . . . . 5  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
601fveq1d 5853 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( P `  n
) `  y )  =  ( ( P `
 m ) `  y ) )
6160cbvmptv 4489 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  =  ( m  e.  NN  |->  ( ( P `
 m ) `  y ) )
6261rneqi 5052 . . . . . . . 8  |-  ran  (
n  e.  NN  |->  ( ( P `  n
) `  y )
)  =  ran  (
m  e.  NN  |->  ( ( P `  m
) `  y )
)
6362supeq1i 7942 . . . . . . 7  |-  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `  y
) ) ,  RR ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( ( P `
 m ) `  y ) ) ,  RR ,  <  )
64 nnuz 11164 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
65 1zzd 10938 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  ZZ )
6615ffvelrnda 6011 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( P `  m
) `  y )  e.  RR )
6766an32s 807 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( P `  m
) `  y )  e.  RR )
6867, 61fmptd 6035 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) : NN --> RR )
69 peano2nn 10590 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
70 ffvelrn 6009 . . . . . . . . . . . . . . . . 17  |-  ( ( P : NN --> dom  S.1  /\  ( m  +  1 )  e.  NN )  ->  ( P `  ( m  +  1
) )  e.  dom  S.1 )
7110, 69, 70syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 ( m  + 
1 ) )  e. 
dom  S.1 )
72 i1ff 22377 . . . . . . . . . . . . . . . 16  |-  ( ( P `  ( m  +  1 ) )  e.  dom  S.1  ->  ( P `  ( m  +  1 ) ) : RR --> RR )
7371, 72syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 ( m  + 
1 ) ) : RR --> RR )
74 ffn 5716 . . . . . . . . . . . . . . 15  |-  ( ( P `  ( m  +  1 ) ) : RR --> RR  ->  ( P `  ( m  +  1 ) )  Fn  RR )
7573, 74syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( P `
 ( m  + 
1 ) )  Fn  RR )
76 eqidd 2405 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( P `  (
m  +  1 ) ) `  y )  =  ( ( P `
 ( m  + 
1 ) ) `  y ) )
7736, 75, 41, 41, 42, 43, 76ofrfval 6531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( P `  m )  oR  <_  ( P `  ( m  +  1 ) )  <->  A. y  e.  RR  ( ( P `  m ) `  y
)  <_  ( ( P `  ( m  +  1 ) ) `
 y ) ) )
7827, 77mpbid 212 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  A. y  e.  RR  ( ( P `
 m ) `  y )  <_  (
( P `  (
m  +  1 ) ) `  y ) )
7978r19.21bi 2775 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( P `  m
) `  y )  <_  ( ( P `  ( m  +  1
) ) `  y
) )
8079an32s 807 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( P `  m
) `  y )  <_  ( ( P `  ( m  +  1
) ) `  y
) )
81 eqid 2404 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  =  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )
82 fvex 5861 . . . . . . . . . . . 12  |-  ( ( P `  m ) `
 y )  e. 
_V
8360, 81, 82fvmpt 5934 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  m
)  =  ( ( P `  m ) `
 y ) )
8483adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  m
)  =  ( ( P `  m ) `
 y ) )
85 fveq2 5851 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  + 
1 )  ->  ( P `  n )  =  ( P `  ( m  +  1
) ) )
8685fveq1d 5853 . . . . . . . . . . . . 13  |-  ( n  =  ( m  + 
1 )  ->  (
( P `  n
) `  y )  =  ( ( P `
 ( m  + 
1 ) ) `  y ) )
87 fvex 5861 . . . . . . . . . . . . 13  |-  ( ( P `  ( m  +  1 ) ) `
 y )  e. 
_V
8886, 81, 87fvmpt 5934 . . . . . . . . . . . 12  |-  ( ( m  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
m  +  1 ) )  =  ( ( P `  ( m  +  1 ) ) `
 y ) )
8969, 88syl 17 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
m  +  1 ) )  =  ( ( P `  ( m  +  1 ) ) `
 y ) )
9089adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  (
m  +  1 ) )  =  ( ( P `  ( m  +  1 ) ) `
 y ) )
9180, 84, 903brtr4d 4427 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  m
)  <_  ( (
n  e.  NN  |->  ( ( P `  n
) `  y )
) `  ( m  +  1 ) ) )
9283breq1d 4407 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( P `
 n ) `  y ) ) `  m )  <_  z  <->  ( ( P `  m
) `  y )  <_  z ) )
9392ralbiia 2836 . . . . . . . . . . 11  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  m
)  <_  z  <->  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  z
)
9493rexbii 2908 . . . . . . . . . 10  |-  ( E. z  e.  RR  A. m  e.  NN  (
( n  e.  NN  |->  ( ( P `  n ) `  y
) ) `  m
)  <_  z  <->  E. z  e.  RR  A. m  e.  NN  ( ( P `
 m ) `  y )  <_  z
)
9553, 94sylibr 214 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  E. z  e.  RR  A. m  e.  NN  ( ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) `
 m )  <_ 
z )
9664, 65, 68, 91, 95climsup 13643 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  ~~>  sup ( ran  (
n  e.  NN  |->  ( ( P `  n
) `  y )
) ,  RR ,  <  ) )
97 fveq2 5851 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( P `  n
) `  x )  =  ( ( P `
 n ) `  y ) )
9897mpteq2dv 4484 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) )
99 fveq2 5851 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
10098, 99breq12d 4410 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( P `
 n ) `  y ) )  ~~>  ( F `
 y ) ) )
101100rspccva 3161 . . . . . . . . 9  |-  ( ( A. x  e.  RR  ( n  e.  NN  |->  ( ( P `  n ) `  x
) )  ~~>  ( F `
 x )  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `  y
) )  ~~>  ( F `
 y ) )
10233, 101sylan 471 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) )  ~~>  ( F `  y
) )
103 climuni 13526 . . . . . . . 8  |-  ( ( ( n  e.  NN  |->  ( ( P `  n ) `  y
) )  ~~>  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `  y
) ) ,  RR ,  <  )  /\  (
n  e.  NN  |->  ( ( P `  n
) `  y )
)  ~~>  ( F `  y ) )  ->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `
 y ) ) ,  RR ,  <  )  =  ( F `  y ) )
10496, 102, 103syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `  y
) ) ,  RR ,  <  )  =  ( F `  y ) )
10563, 104syl5eqr 2459 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  sup ( ran  ( m  e.  NN  |->  ( ( P `  m ) `  y
) ) ,  RR ,  <  )  =  ( F `  y ) )
106105mpteq2dva 4483 . . . . 5  |-  ( ph  ->  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( P `  m ) `
 y ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  ( F `
 y ) ) )
10759, 106eqtr4d 2448 . . . 4  |-  ( ph  ->  F  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( P `  m ) `  y
) ) ,  RR ,  <  ) ) )
108107, 9syl6eqr 2463 . . 3  |-  ( ph  ->  F  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `  x
) ) ,  RR ,  <  ) ) )
109108fveq2d 5855 . 2  |-  ( ph  ->  ( S.2 `  F
)  =  ( S.2 `  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( P `  n ) `
 x ) ) ,  RR ,  <  ) ) ) )
110 itg2itg1 22437 . . . . . . . 8  |-  ( ( ( P `  m
)  e.  dom  S.1  /\  0p  oR  <_  ( P `  m ) )  -> 
( S.2 `  ( P `
 m ) )  =  ( S.1 `  ( P `  m )
) )
11111, 24, 110syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( S.2 `  ( P `  m
) )  =  ( S.1 `  ( P `
 m ) ) )
112111mpteq2dva 4483 . . . . . 6  |-  ( ph  ->  ( m  e.  NN  |->  ( S.2 `  ( P `
 m ) ) )  =  ( m  e.  NN  |->  ( S.1 `  ( P `  m
) ) ) )
113 itg2i1fseq.6 . . . . . 6  |-  S  =  ( m  e.  NN  |->  ( S.1 `  ( P `
 m ) ) )
114112, 113syl6reqr 2464 . . . . 5  |-  ( ph  ->  S  =  ( m  e.  NN  |->  ( S.2 `  ( P `  m
) ) ) )
115114, 55syl6eqr 2463 . . . 4  |-  ( ph  ->  S  =  ( n  e.  NN  |->  ( S.2 `  ( P `  n
) ) ) )
116115rneqd 5053 . . 3  |-  ( ph  ->  ran  S  =  ran  ( n  e.  NN  |->  ( S.2 `  ( P `
 n ) ) ) )
117116supeq1d 7941 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( P `
 n ) ) ) ,  RR* ,  <  ) )
11858, 109, 1173eqtr4d 2455 1  |-  ( ph  ->  ( S.2 `  F
)  =  sup ( ran  S ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   E.wrex 2757   _Vcvv 3061   class class class wbr 4397    |-> cmpt 4455   dom cdm 4825   ran crn 4826    Fn wfn 5566   -->wf 5567   ` cfv 5571  (class class class)co 6280    oRcofr 6522   supcsup 7936   RRcr 9523   0cc0 9524   1c1 9525    + caddc 9527   +oocpnf 9657   RR*cxr 9659    < clt 9660    <_ cle 9661   NNcn 10578   [,)cico 11586    ~~> cli 13458  MblFncmbf 22317   S.1citg1 22318   S.2citg2 22319   0pc0p 22370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cc 8849  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602  ax-addf 9603
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-disj 4369  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-ofr 6524  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-omul 7174  df-er 7350  df-map 7461  df-pm 7462  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fi 7907  df-sup 7937  df-oi 7971  df-card 8354  df-acn 8357  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-q 11230  df-rp 11268  df-xneg 11373  df-xadd 11374  df-xmul 11375  df-ioo 11588  df-ioc 11589  df-ico 11590  df-icc 11591  df-fz 11729  df-fzo 11857  df-fl 11968  df-seq 12154  df-exp 12213  df-hash 12455  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-clim 13462  df-rlim 13463  df-sum 13660  df-rest 15039  df-topgen 15060  df-psmet 18733  df-xmet 18734  df-met 18735  df-bl 18736  df-mopn 18737  df-top 19693  df-bases 19695  df-topon 19696  df-cmp 20182  df-ovol 22170  df-vol 22171  df-mbf 22322  df-itg1 22323  df-itg2 22324  df-0p 22371
This theorem is referenced by:  itg2i1fseq2  22457
  Copyright terms: Public domain W3C validator