MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   Unicode version

Theorem itg2gt0 22711
Description: If the function  F is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1  |-  ( ph  ->  A  e.  dom  vol )
itg2gt0.2  |-  ( ph  ->  0  <  ( vol `  A ) )
itg2gt0.3  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2gt0.4  |-  ( ph  ->  F  e. MblFn )
itg2gt0.5  |-  ( (
ph  /\  x  e.  A )  ->  0  <  ( F `  x
) )
Assertion
Ref Expression
itg2gt0  |-  ( ph  ->  0  <  ( S.2 `  F ) )
Distinct variable groups:    x, A    x, F    ph, x

Proof of Theorem itg2gt0
Dummy variables  k  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2  |-  ( ph  ->  0  <  ( vol `  A ) )
2 itg2gt0.1 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
3 iccssxr 11714 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
4 volf 22476 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] +oo )
54ffvelrni 6019 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
63, 5sseldi 3429 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
72, 6syl 17 . . . . . 6  |-  ( ph  ->  ( vol `  A
)  e.  RR* )
87adantr 467 . . . . 5  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol `  A )  e. 
RR* )
9 itg2gt0.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
10 reex 9627 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
11 fex 6136 . . . . . . . . . . . . . . . 16  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  RR  e.  _V )  ->  F  e.  _V )
129, 10, 11sylancl 667 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  _V )
13 cnvexg 6736 . . . . . . . . . . . . . . 15  |-  ( F  e.  _V  ->  `' F  e.  _V )
1412, 13syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  `' F  e.  _V )
15 imaexg 6727 . . . . . . . . . . . . . 14  |-  ( `' F  e.  _V  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  e.  _V )
1614, 15syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' F "
( ( 1  /  n ) (,) +oo ) )  e.  _V )
1716adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  e.  _V )
18 eqid 2450 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  =  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )
1917, 18fmptd 6044 . . . . . . . . . . 11  |-  ( ph  ->  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) : NN --> _V )
20 ffn 5726 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) : NN --> _V  ->  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  Fn  NN )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  Fn  NN )
22 fniunfv 6150 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  Fn  NN  ->  U_ k  e.  NN  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  U. ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )
2321, 22syl 17 . . . . . . . . 9  |-  ( ph  ->  U_ k  e.  NN  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )
24 itg2gt0.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e. MblFn )
25 rge0ssre 11737 . . . . . . . . . . . . . . . 16  |-  ( 0 [,) +oo )  C_  RR
26 fss 5735 . . . . . . . . . . . . . . . 16  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : RR --> RR )
279, 25, 26sylancl 667 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : RR --> RR )
28 mbfima 22581 . . . . . . . . . . . . . . 15  |-  ( ( F  e. MblFn  /\  F : RR
--> RR )  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  e.  dom  vol )
2924, 27, 28syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( ( 1  /  n ) (,) +oo ) )  e.  dom  vol )
3029adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  e.  dom  vol )
3130, 18fmptd 6044 . . . . . . . . . . . 12  |-  ( ph  ->  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) : NN --> dom  vol )
3231ffvelrnda 6020 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  e.  dom  vol )
3332ralrimiva 2801 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  NN  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  e.  dom  vol )
34 iunmbl 22499 . . . . . . . . . 10  |-  ( A. k  e.  NN  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  e.  dom  vol  ->  U_ k  e.  NN  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  e.  dom  vol )
3533, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  U_ k  e.  NN  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  e.  dom  vol )
3623, 35eqeltrrd 2529 . . . . . . . 8  |-  ( ph  ->  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  e.  dom  vol )
37 mblss 22478 . . . . . . . 8  |-  ( U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  e.  dom  vol  ->  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  RR )
3836, 37syl 17 . . . . . . 7  |-  ( ph  ->  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  RR )
39 ovolcl 22424 . . . . . . 7  |-  ( U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  RR  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  e.  RR* )
4038, 39syl 17 . . . . . 6  |-  ( ph  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  e.  RR* )
4140adantr 467 . . . . 5  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  e.  RR* )
42 0xr 9684 . . . . . 6  |-  0  e.  RR*
4342a1i 11 . . . . 5  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  0  e.  RR* )
44 mblvol 22477 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  =  ( vol* `  A ) )
452, 44syl 17 . . . . . . 7  |-  ( ph  ->  ( vol `  A
)  =  ( vol* `  A )
)
46 mblss 22478 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
472, 46syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
4847sselda 3431 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
499ffvelrnda 6020 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
50 elrege0 11735 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
5149, 50sylib 200 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
5251simpld 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
5348, 52syldan 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
54 itg2gt0.5 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  <  ( F `  x
) )
55 nnrecl 10864 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  RR  /\  0  <  ( F `  x ) )  ->  E. k  e.  NN  ( 1  /  k
)  <  ( F `  x ) )
5653, 54, 55syl2anc 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  E. k  e.  NN  ( 1  / 
k )  <  ( F `  x )
)
57 ffn 5726 . . . . . . . . . . . . . . . . . 18  |-  ( F : RR --> ( 0 [,) +oo )  ->  F  Fn  RR )
589, 57syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  Fn  RR )
5958ad2antrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  F  Fn  RR )
60 elpreima 6000 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  RR  ->  (
x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) )  <-> 
( x  e.  RR  /\  ( F `  x
)  e.  ( ( 1  /  k ) (,) +oo ) ) ) )
6159, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) )  <-> 
( x  e.  RR  /\  ( F `  x
)  e.  ( ( 1  /  k ) (,) +oo ) ) ) )
6248adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  x  e.  RR )
6362biantrurd 511 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( F `  x
)  e.  ( ( 1  /  k ) (,) +oo )  <->  ( x  e.  RR  /\  ( F `
 x )  e.  ( ( 1  / 
k ) (,) +oo ) ) ) )
64 nnrecre 10643 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
6564adantl 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e.  RR )
6665rexrd 9687 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e. 
RR* )
6766adantlr 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
1  /  k )  e.  RR* )
68 elioopnf 11725 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  k )  e.  RR*  ->  ( ( F `  x )  e.  ( ( 1  /  k ) (,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  ( 1  /  k )  < 
( F `  x
) ) ) )
6967, 68syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( F `  x
)  e.  ( ( 1  /  k ) (,) +oo )  <->  ( ( F `  x )  e.  RR  /\  ( 1  /  k )  < 
( F `  x
) ) ) )
7061, 63, 693bitr2d 285 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) )  <-> 
( ( F `  x )  e.  RR  /\  ( 1  /  k
)  <  ( F `  x ) ) ) )
71 id 22 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN )
72 imaexg 6727 . . . . . . . . . . . . . . . . . 18  |-  ( `' F  e.  _V  ->  ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  _V )
7314, 72syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' F "
( ( 1  / 
k ) (,) +oo ) )  e.  _V )
7473adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  _V )
75 oveq2 6296 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
7675oveq1d 6303 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( 1  /  n
) (,) +oo )  =  ( ( 1  /  k ) (,) +oo ) )
7776imaeq2d 5167 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  =  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )
7877, 18fvmptg 5944 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  _V )  -> 
( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )
7971, 74, 78syl2anr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )
8079eleq2d 2513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
x  e.  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  <-> 
x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) )
8153adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  ( F `  x )  e.  RR )
8281biantrurd 511 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( 1  /  k
)  <  ( F `  x )  <->  ( ( F `  x )  e.  RR  /\  ( 1  /  k )  < 
( F `  x
) ) ) )
8370, 80, 823bitr4rd 290 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( 1  /  k
)  <  ( F `  x )  <->  x  e.  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
8483rexbidva 2897 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( E. k  e.  NN  ( 1  /  k
)  <  ( F `  x )  <->  E. k  e.  NN  x  e.  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
8556, 84mpbid 214 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  E. k  e.  NN  x  e.  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )
8685ex 436 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  E. k  e.  NN  x  e.  ( (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
87 eluni2 4201 . . . . . . . . . . 11  |-  ( x  e.  U. ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  <->  E. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) x  e.  z )
88 eleq2 2517 . . . . . . . . . . . . 13  |-  ( z  =  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  ->  ( x  e.  z  <->  x  e.  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
8988rexrn 6022 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  Fn  NN  ->  ( E. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) x  e.  z  <->  E. k  e.  NN  x  e.  ( (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
9021, 89syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( E. z  e. 
ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) x  e.  z  <->  E. k  e.  NN  x  e.  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
9187, 90syl5bb 261 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  <->  E. k  e.  NN  x  e.  ( (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
9286, 91sylibrd 238 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  ->  x  e.  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
9392ssrdv 3437 . . . . . . . 8  |-  ( ph  ->  A  C_  U. ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )
94 ovolss 22431 . . . . . . . 8  |-  ( ( A  C_  U. ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  /\  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  RR )  ->  ( vol* `  A )  <_  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
9593, 38, 94syl2anc 666 . . . . . . 7  |-  ( ph  ->  ( vol* `  A )  <_  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
9645, 95eqbrtrd 4422 . . . . . 6  |-  ( ph  ->  ( vol `  A
)  <_  ( vol* `  U. ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
9796adantr 467 . . . . 5  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol `  A )  <_ 
( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
98 mblvol 22477 . . . . . . . . 9  |-  ( U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  e.  dom  vol  ->  ( vol `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
9936, 98syl 17 . . . . . . . 8  |-  ( ph  ->  ( vol `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) )
100 peano2nn 10618 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
101100adantl 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
102 nnrecre 10643 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN  ->  (
1  /  ( k  +  1 ) )  e.  RR )
103101, 102syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( k  +  1 ) )  e.  RR )
104103rexrd 9687 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( k  +  1 ) )  e. 
RR* )
105 nnre 10613 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  RR )
106105adantl 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  RR )
107106lep1d 10535 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  <_ 
( k  +  1 ) )
108 nngt0 10635 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  0  <  k )
109108adantl 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
k )
110101nnred 10621 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  RR )
111101nngt0d 10650 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
( k  +  1 ) )
112 lerec 10486 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  RR  /\  0  <  k )  /\  ( ( k  +  1 )  e.  RR  /\  0  < 
( k  +  1 ) ) )  -> 
( k  <_  (
k  +  1 )  <-> 
( 1  /  (
k  +  1 ) )  <_  ( 1  /  k ) ) )
113106, 109, 110, 111, 112syl22anc 1268 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  <_  ( k  +  1 )  <->  ( 1  /  ( k  +  1 ) )  <_ 
( 1  /  k
) ) )
114107, 113mpbid 214 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( k  +  1 ) )  <_ 
( 1  /  k
) )
115 iooss1 11668 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  (
k  +  1 ) )  e.  RR*  /\  (
1  /  ( k  +  1 ) )  <_  ( 1  / 
k ) )  -> 
( ( 1  / 
k ) (,) +oo )  C_  ( ( 1  /  ( k  +  1 ) ) (,) +oo ) )
116104, 114, 115syl2anc 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  k ) (,) +oo )  C_  ( ( 1  / 
( k  +  1 ) ) (,) +oo ) )
117 imass2 5203 . . . . . . . . . . . 12  |-  ( ( ( 1  /  k
) (,) +oo )  C_  ( ( 1  / 
( k  +  1 ) ) (,) +oo )  ->  ( `' F " ( ( 1  / 
k ) (,) +oo ) )  C_  ( `' F " ( ( 1  /  ( k  +  1 ) ) (,) +oo ) ) )
118116, 117syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( `' F " ( ( 1  /  k ) (,) +oo ) ) 
C_  ( `' F " ( ( 1  / 
( k  +  1 ) ) (,) +oo ) ) )
11971, 73, 78syl2anr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )
120 imaexg 6727 . . . . . . . . . . . . 13  |-  ( `' F  e.  _V  ->  ( `' F " ( ( 1  /  ( k  +  1 ) ) (,) +oo ) )  e.  _V )
12114, 120syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( ( 1  / 
( k  +  1 ) ) (,) +oo ) )  e.  _V )
122 oveq2 6296 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
123122oveq1d 6303 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  (
( 1  /  n
) (,) +oo )  =  ( ( 1  /  ( k  +  1 ) ) (,) +oo ) )
124123imaeq2d 5167 . . . . . . . . . . . . 13  |-  ( n  =  ( k  +  1 )  ->  ( `' F " ( ( 1  /  n ) (,) +oo ) )  =  ( `' F " ( ( 1  / 
( k  +  1 ) ) (,) +oo ) ) )
125124, 18fvmptg 5944 . . . . . . . . . . . 12  |-  ( ( ( k  +  1 )  e.  NN  /\  ( `' F " ( ( 1  /  ( k  +  1 ) ) (,) +oo ) )  e.  _V )  -> 
( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  ( k  +  1 ) )  =  ( `' F " ( ( 1  /  ( k  +  1 ) ) (,) +oo ) ) )
126100, 121, 125syl2anr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  ( k  +  1 ) )  =  ( `' F " ( ( 1  / 
( k  +  1 ) ) (,) +oo ) ) )
127118, 119, 1263sstr4d 3474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) 
C_  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  ( k  +  1 ) ) )
128127ralrimiva 2801 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  C_  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  ( k  +  1 ) ) )
129 volsup 22502 . . . . . . . . 9  |-  ( ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) : NN --> dom  vol  /\ 
A. k  e.  NN  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  C_  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  ( k  +  1 ) ) )  ->  ( vol ` 
U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  sup ( ( vol " ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  ) )
13031, 128, 129syl2anc 666 . . . . . . . 8  |-  ( ph  ->  ( vol `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  sup ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  ) )
13199, 130eqtr3d 2486 . . . . . . 7  |-  ( ph  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  sup ( ( vol " ran  (
n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  ) )
132131adantr 467 . . . . . 6  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  =  sup ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  ) )
13373adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  _V )
13471, 133, 78syl2anr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  0  <  ( S.2 `  F
) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  =  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )
135134fveq2d 5867 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  0  <  ( S.2 `  F
) )  /\  k  e.  NN )  ->  ( vol `  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  =  ( vol `  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) ) )
13642a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
0  e.  RR* )
137 nnrecgt0 10644 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  NN  ->  0  <  ( 1  /  k
) )
138137adantl 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
( 1  /  k
) )
139 0re 9640 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  RR
140 ltle 9719 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 0  e.  RR  /\  ( 1  /  k
)  e.  RR )  ->  ( 0  < 
( 1  /  k
)  ->  0  <_  ( 1  /  k ) ) )
141139, 65, 140sylancr 668 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0  <  ( 1  / 
k )  ->  0  <_  ( 1  /  k
) ) )
142138, 141mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  k
) )
143 elxrge0 11738 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  /  k )  e.  ( 0 [,] +oo )  <->  ( ( 1  /  k )  e. 
RR*  /\  0  <_  ( 1  /  k ) ) )
14466, 142, 143sylanbrc 669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e.  ( 0 [,] +oo ) )
145 0e0iccpnf 11740 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  ( 0 [,] +oo )
146 ifcl 3922 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1  /  k
)  e.  ( 0 [,] +oo )  /\  0  e.  ( 0 [,] +oo ) )  ->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  e.  ( 0 [,] +oo ) )
147144, 145, 146sylancl 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  NN )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  e.  ( 0 [,] +oo ) )
148147adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  e.  ( 0 [,] +oo ) )
149 eqid 2450 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) )
150148, 149fmptd 6044 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
151150adantrr 722 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
152 itg2cl 22683 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) : RR --> ( 0 [,] +oo )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  e. 
RR* )
153151, 152syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  e. 
RR* )
154 icossicc 11718 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
155 fss 5735 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  F : RR --> ( 0 [,] +oo ) )
1569, 154, 155sylancl 667 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F : RR --> ( 0 [,] +oo ) )
157 itg2cl 22683 . . . . . . . . . . . . . . . . . . 19  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( S.2 `  F )  e.  RR* )
158156, 157syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S.2 `  F
)  e.  RR* )
159158adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( S.2 `  F )  e.  RR* )
160 0nrp 11331 . . . . . . . . . . . . . . . . . . 19  |-  -.  0  e.  RR+
161 simpr 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )
162119, 32eqeltrrd 2529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  dom  vol )
163162adantrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( `' F "
( ( 1  / 
k ) (,) +oo ) )  e.  dom  vol )
164163adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( `' F " ( ( 1  / 
k ) (,) +oo ) )  e.  dom  vol )
165161, 139syl6eqelr 2537 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  e.  RR )
16665, 138elrpd 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e.  RR+ )
167166adantrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( 1  /  k
)  e.  RR+ )
168167adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( 1  / 
k )  e.  RR+ )
169 itg2const2 22692 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( `' F "
( ( 1  / 
k ) (,) +oo ) )  e.  dom  vol 
/\  ( 1  / 
k )  e.  RR+ )  ->  ( ( vol `  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  e.  RR ) )
170164, 168, 169syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( ( vol `  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  e.  RR ) )
171165, 170mpbird 236 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  RR )
172 elrege0 11735 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1  /  k )  e.  ( 0 [,) +oo )  <->  ( ( 1  /  k )  e.  RR  /\  0  <_ 
( 1  /  k
) ) )
17365, 142, 172sylanbrc 669 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  k )  e.  ( 0 [,) +oo ) )
174173adantrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( 1  /  k
)  e.  ( 0 [,) +oo ) )
175174adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( 1  / 
k )  e.  ( 0 [,) +oo )
)
176 itg2const 22691 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( `' F "
( ( 1  / 
k ) (,) +oo ) )  e.  dom  vol 
/\  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  RR  /\  ( 1  /  k
)  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  =  ( ( 1  / 
k )  x.  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ) ) )
177164, 171, 175, 176syl3anc 1267 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  =  ( ( 1  / 
k )  x.  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ) ) )
178161, 177eqtrd 2484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  0  =  ( ( 1  /  k
)  x.  ( vol `  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) ) ) )
179 simplrr 770 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  0  <  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ) )
180171, 179elrpd 11335 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  RR+ )
181168, 180rpmulcld 11354 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  ( ( 1  /  k )  x.  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) )  e.  RR+ )
182178, 181eqeltrd 2528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
k  e.  NN  /\  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  /\  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )  ->  0  e.  RR+ )
183182ex 436 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( 0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  -> 
0  e.  RR+ )
)
184160, 183mtoi 182 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  ->  -.  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) ) )
185 itg2ge0 22686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) : RR --> ( 0 [,] +oo )  ->  0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) ) )
186151, 185syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )
187 xrleloe 11440 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  RR*  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) )  e.  RR* )  ->  ( 0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) )  <->  ( 0  < 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  \/  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) ) ) )
18842, 153, 187sylancr 668 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( 0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) )  <->  ( 0  < 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  \/  0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) ) ) )
189186, 188mpbid 214 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( 0  <  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) ) )  \/  0  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) ) )
190189ord 379 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( -.  0  < 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  -> 
0  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) ) )
191184, 190mt3d 129 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
0  <  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) ) )
192156adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  ->  F : RR --> ( 0 [,] +oo ) )
19365adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( 1  /  k
)  e.  RR )
19458adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  NN )  ->  F  Fn  RR )
195194, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  NN )  ->  ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) )  <->  ( x  e.  RR  /\  ( F `
 x )  e.  ( ( 1  / 
k ) (,) +oo ) ) ) )
196195biimpa 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( x  e.  RR  /\  ( F `  x
)  e.  ( ( 1  /  k ) (,) +oo ) ) )
197196simpld 461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  ->  x  e.  RR )
19852adantlr 720 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
199197, 198syldan 473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( F `  x
)  e.  RR )
20066adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( 1  /  k
)  e.  RR* )
201196simprd 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( F `  x
)  e.  ( ( 1  /  k ) (,) +oo ) )
202 simpr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F `  x
)  e.  RR  /\  ( 1  /  k
)  <  ( F `  x ) )  -> 
( 1  /  k
)  <  ( F `  x ) )
20368, 202syl6bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1  /  k )  e.  RR*  ->  ( ( F `  x )  e.  ( ( 1  /  k ) (,) +oo )  ->  ( 1  /  k )  < 
( F `  x
) ) )
204200, 201, 203sylc 62 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( 1  /  k
)  <  ( F `  x ) )
205193, 199, 204ltled 9780 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
( 1  /  k
)  <_  ( F `  x ) )
20651simprd 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
207206adantlr 720 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( F `  x
) )
208197, 207syldan 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
0  <_  ( F `  x ) )
209 breq1 4404 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1  /  k )  =  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  -> 
( ( 1  / 
k )  <_  ( F `  x )  <->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) ) )
210 breq1 4404 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  =  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) ) )
211209, 210ifboth 3916 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1  /  k
)  <_  ( F `  x )  /\  0  <_  ( F `  x
) )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
212205, 208, 211syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
213212adantlr 720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  ->  if (
x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
214 iffalse 3889 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) )  ->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  =  0 )
215214adantl 468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  =  0 )
216207adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  -> 
0  <_  ( F `  x ) )
217215, 216eqbrtrd 4422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
218213, 217pm2.61dan 799 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
219218ralrimiva 2801 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  NN )  ->  A. x  e.  RR  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  <_ 
( F `  x
) )
220219adantrr 722 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  ->  A. x  e.  RR  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) )
22110a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  RR  e.  _V )
222 ovex 6316 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  /  k )  e. 
_V
223 c0ex 9634 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  _V
224222, 223ifex 3948 . . . . . . . . . . . . . . . . . . . . . 22  |-  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  e.  _V
225224a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  e.  _V )
226 fvex 5873 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F `
 x )  e. 
_V
227226a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
_V )
228 eqidd 2451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )
2299feqmptd 5916 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
230221, 225, 227, 228, 229ofrfval2 6546 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 )  <_  ( F `  x ) ) )
231230biimpar 488 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  A. x  e.  RR  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 )  <_ 
( F `  x
) )  ->  (
x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) )  oR  <_  F )
232220, 231syldan 473 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) )  oR  <_  F )
233 itg2le 22690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) ,  ( 1  /  k ) ,  0 ) )  oR  <_  F
)  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  <_ 
( S.2 `  F ) )
234151, 192, 232, 233syl3anc 1267 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ,  ( 1  / 
k ) ,  0 ) ) )  <_ 
( S.2 `  F ) )
235136, 153, 159, 191, 234xrltletrd 11455 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  NN  /\  0  < 
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )  -> 
0  <  ( S.2 `  F ) )
236235expr 619 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  ->  0  <  ( S.2 `  F ) ) )
237236con3d 139 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( -.  0  <  ( S.2 `  F )  ->  -.  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )
2384ffvelrni 6019 . . . . . . . . . . . . . . . . 17  |-  ( ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  dom  vol  ->  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  ( 0 [,] +oo ) )
2393, 238sseldi 3429 . . . . . . . . . . . . . . . 16  |-  ( ( `' F " ( ( 1  /  k ) (,) +oo ) )  e.  dom  vol  ->  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  RR* )
240162, 239syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol `  ( `' F "
( ( 1  / 
k ) (,) +oo ) ) )  e. 
RR* )
241 xrlenlt 9696 . . . . . . . . . . . . . . 15  |-  ( ( ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  e.  RR*  /\  0  e.  RR* )  ->  (
( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  <_  0  <->  -.  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )
242240, 42, 241sylancl 667 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) )  <_  0  <->  -.  0  <  ( vol `  ( `' F " ( ( 1  /  k ) (,) +oo ) ) ) ) )
243237, 242sylibrd 238 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( -.  0  <  ( S.2 `  F )  ->  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )  <_ 
0 ) )
244243imp 431 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )  <_ 
0 )
245244an32s 812 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  0  <  ( S.2 `  F
) )  /\  k  e.  NN )  ->  ( vol `  ( `' F " ( ( 1  / 
k ) (,) +oo ) ) )  <_ 
0 )
246135, 245eqbrtrd 4422 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  0  <  ( S.2 `  F
) )  /\  k  e.  NN )  ->  ( vol `  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 )
247246ralrimiva 2801 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  A. k  e.  NN  ( vol `  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 )
248 fveq2 5863 . . . . . . . . . . . . 13  |-  ( z  =  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  ->  ( vol `  z
)  =  ( vol `  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) ) )
249248breq1d 4411 . . . . . . . . . . . 12  |-  ( z  =  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k )  ->  ( ( vol `  z )  <_  0  <->  ( vol `  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 ) )
250249ralrn 6023 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z
)  <_  0  <->  A. k  e.  NN  ( vol `  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 ) )
25119, 20, 2503syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z )  <_  0  <->  A. k  e.  NN  ( vol `  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 ) )
252251adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z
)  <_  0  <->  A. k  e.  NN  ( vol `  (
( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) `  k ) )  <_  0 ) )
253247, 252mpbird 236 . . . . . . . 8  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  A. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z )  <_  0 )
254 ffn 5726 . . . . . . . . . 10  |-  ( vol
: dom  vol --> ( 0 [,] +oo )  ->  vol  Fn  dom  vol )
2554, 254ax-mp 5 . . . . . . . . 9  |-  vol  Fn  dom  vol
256 frn 5733 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) : NN --> dom  vol  ->  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  dom  vol )
25731, 256syl 17 . . . . . . . . . 10  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  dom  vol )
258257adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  dom  vol )
259 breq1 4404 . . . . . . . . . 10  |-  ( x  =  ( vol `  z
)  ->  ( x  <_  0  <->  ( vol `  z
)  <_  0 ) )
260259ralima 6143 . . . . . . . . 9  |-  ( ( vol  Fn  dom  vol  /\ 
ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) )  C_  dom  vol )  ->  ( A. x  e.  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) x  <_ 
0  <->  A. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z
)  <_  0 ) )
261255, 258, 260sylancr 668 . . . . . . . 8  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( A. x  e.  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) x  <_ 
0  <->  A. z  e.  ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ( vol `  z
)  <_  0 ) )
262253, 261mpbird 236 . . . . . . 7  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  A. x  e.  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) x  <_ 
0 )
263 imassrn 5178 . . . . . . . . 9  |-  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) 
C_  ran  vol
264 frn 5733 . . . . . . . . . . 11  |-  ( vol
: dom  vol --> ( 0 [,] +oo )  ->  ran  vol  C_  ( 0 [,] +oo ) )
2654, 264ax-mp 5 . . . . . . . . . 10  |-  ran  vol  C_  ( 0 [,] +oo )
266265, 3sstri 3440 . . . . . . . . 9  |-  ran  vol  C_ 
RR*
267263, 266sstri 3440 . . . . . . . 8  |-  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) 
C_  RR*
268 supxrleub 11609 . . . . . . . 8  |-  ( ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  C_  RR*  /\  0  e.  RR* )  ->  ( sup ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  )  <_  0  <->  A. x  e.  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) x  <_  0 ) )
269267, 42, 268mp2an 677 . . . . . . 7  |-  ( sup ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  )  <_  0  <->  A. x  e.  ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) x  <_  0 )
270262, 269sylibr 216 . . . . . 6  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  sup ( ( vol " ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) ) ,  RR* ,  <  )  <_  0
)
271132, 270eqbrtrd 4422 . . . . 5  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol* `  U. ran  ( n  e.  NN  |->  ( `' F " ( ( 1  /  n ) (,) +oo ) ) ) )  <_  0
)
2728, 41, 43, 97, 271xrletrd 11456 . . . 4  |-  ( (
ph  /\  -.  0  <  ( S.2 `  F
) )  ->  ( vol `  A )  <_ 
0 )
273272ex 436 . . 3  |-  ( ph  ->  ( -.  0  < 
( S.2 `  F )  ->  ( vol `  A
)  <_  0 ) )
274 xrlenlt 9696 . . . 4  |-  ( ( ( vol `  A
)  e.  RR*  /\  0  e.  RR* )  ->  (
( vol `  A
)  <_  0  <->  -.  0  <  ( vol `  A
) ) )
2757, 42, 274sylancl 667 . . 3  |-  ( ph  ->  ( ( vol `  A
)  <_  0  <->  -.  0  <  ( vol `  A
) ) )
276273, 275sylibd 218 . 2  |-  ( ph  ->  ( -.  0  < 
( S.2 `  F )  ->  -.  0  <  ( vol `  A ) ) )
2771, 276mt4d 144 1  |-  ( ph  ->  0  <  ( S.2 `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737   _Vcvv 3044    C_ wss 3403   ifcif 3880   U.cuni 4197   U_ciun 4277   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   dom cdm 4833   ran crn 4834   "cima 4836    Fn wfn 5576   -->wf 5577   ` cfv 5581  (class class class)co 6288    oRcofr 6527   supcsup 7951   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541   +oocpnf 9669   RR*cxr 9671    < clt 9672    <_ cle 9673    / cdiv 10266   NNcn 10606   RR+crp 11299   (,)cioo 11632   [,)cico 11634   [,]cicc 11635   vol*covol 22406   volcvol 22408  MblFncmbf 22565   S.2citg2 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cc 8862  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-ofr 6529  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-rlim 13546  df-sum 13746  df-rest 15314  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-top 19914  df-bases 19915  df-topon 19916  df-cmp 20395  df-cncf 21903  df-ovol 22409  df-vol 22411  df-mbf 22570  df-itg1 22571  df-itg2 22572  df-0p 22621
This theorem is referenced by:  itggt0  22792
  Copyright terms: Public domain W3C validator