MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Unicode version

Theorem itg2const2 21219
Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( ( vol `  A
)  e.  RR  <->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem itg2const2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  A  e.  dom  vol )
2 simpr 461 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  ( vol `  A
)  e.  RR )
3 rpre 10997 . . . . . 6  |-  ( B  e.  RR+  ->  B  e.  RR )
43ad2antlr 726 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  B  e.  RR )
5 rpge0 11003 . . . . . 6  |-  ( B  e.  RR+  ->  0  <_  B )
65ad2antlr 726 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  0  <_  B
)
7 elrege0 11392 . . . . 5  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
84, 6, 7sylanbrc 664 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  B  e.  ( 0 [,) +oo )
)
9 itg2const 21218 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  A ) ) )
101, 2, 8, 9syl3anc 1218 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  A ) ) )
114, 2remulcld 9414 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  ( B  x.  ( vol `  A ) )  e.  RR )
1210, 11eqeltrd 2517 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( vol `  A
)  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
13 mblvol 21013 . . . 4  |-  ( A  e.  dom  vol  ->  ( vol `  A )  =  ( vol* `  A ) )
1413ad2antrr 725 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( vol `  A
)  =  ( vol* `  A )
)
15 mblss 21014 . . . . . 6  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1615ad3antrrr 729 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( vol* `  A )  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  A  C_  RR )
17 peano2re 9542 . . . . . . . 8  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  e.  RR )
1817adantl 466 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  e.  RR )
19 simplr 754 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  B  e.  RR+ )
2018, 19rerpdivcld 11054 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR )
2120adantr 465 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( vol* `  A )  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  ( (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR )
22 simpr 461 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( vol* `  A )  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  ( vol* `  A )  <_ 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )
23 ovollecl 20966 . . . . 5  |-  ( ( A  C_  RR  /\  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR  /\  ( vol* `  A )  <_  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  ( vol* `  A )  e.  RR )
2416, 21, 22, 23syl3anc 1218 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( vol* `  A )  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  ( vol* `  A )  e.  RR )
25 simplll 757 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  ->  A  e.  dom  vol )
2620adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR )
2726rexrd 9433 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR* )
28 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
293ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  B  e.  RR )
3029rexrd 9433 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  B  e.  RR* )
315ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  0  <_  B
)
32 elxrge0 11394 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e. 
RR*  /\  0  <_  B ) )
3330, 31, 32sylanbrc 664 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  B  e.  ( 0 [,] +oo )
)
34 0e0iccpnf 11396 . . . . . . . . . . . . . . . . 17  |-  0  e.  ( 0 [,] +oo )
35 ifcl 3831 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  ( 0 [,] +oo )  /\  0  e.  ( 0 [,] +oo ) )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,] +oo ) )
3633, 34, 35sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,] +oo ) )
37 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
3836, 37fmptd 5867 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,] +oo ) )
3938adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,] +oo ) )
40 itg2ge0 21213 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,] +oo )  -> 
0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
4139, 40syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  0  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
4228, 41ge0p1rpd 11053 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  e.  RR+ )
4342, 19rpdivcld 11044 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR+ )
4443rpge0d 11031 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  0  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )
4544adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
0  <_  ( (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )
4614breq2d 4304 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol `  A
)  <->  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) ) )
4746biimpar 485 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol `  A
) )
48 0xr 9430 . . . . . . . . . 10  |-  0  e.  RR*
49 iccssxr 11378 . . . . . . . . . . . 12  |-  ( 0 [,] +oo )  C_  RR*
50 volf 21012 . . . . . . . . . . . . 13  |-  vol : dom  vol --> ( 0 [,] +oo )
5150ffvelrni 5842 . . . . . . . . . . . 12  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
5249, 51sseldi 3354 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
5325, 52syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( vol `  A
)  e.  RR* )
54 elicc1 11344 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  (
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  ( 0 [,] ( vol `  A
) )  <->  ( (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR*  /\  0  <_  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol `  A
) ) ) )
5548, 53, 54sylancr 663 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  ( 0 [,] ( vol `  A
) )  <->  ( (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR*  /\  0  <_  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol `  A
) ) ) )
5627, 45, 47, 55mpbir3and 1171 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  ( 0 [,] ( vol `  A
) ) )
57 volivth 21087 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. z  e.  dom  vol ( z  C_  A  /\  ( vol `  z
)  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) )
5825, 56, 57syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  ->  E. z  e.  dom  vol ( z  C_  A  /\  ( vol `  z
)  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) )
5958ex 434 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A )  ->  E. z  e.  dom  vol ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )
60 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
z  e.  dom  vol )
61 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( vol `  z
)  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )
6220adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR )
6361, 62eqeltrd 2517 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( vol `  z
)  e.  RR )
643ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  B  e.  RR )
6564adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  ->  B  e.  RR )
6619adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  ->  B  e.  RR+ )
6766rpge0d 11031 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
0  <_  B )
6865, 67, 7sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  ->  B  e.  ( 0 [,) +oo ) )
69 itg2const 21218 . . . . . . . . . . 11  |-  ( ( z  e.  dom  vol  /\  ( vol `  z
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  z ) ) )
7060, 63, 68, 69syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  z ) ) )
7161oveq2d 6107 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( B  x.  ( vol `  z ) )  =  ( B  x.  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) )
7218recnd 9412 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  e.  CC )
7364recnd 9412 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  B  e.  CC )
74 rpne0 11006 . . . . . . . . . . . . 13  |-  ( B  e.  RR+  ->  B  =/=  0 )
7574ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  B  =/=  0
)
7672, 73, 75divcan2d 10109 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( B  x.  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 ) )
7776adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( B  x.  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 ) )
7870, 71, 773eqtrd 2479 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 ) )
793adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  B  e.  RR )
8079rexrd 9433 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  B  e.  RR* )
815adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  0  <_  B )
8280, 81, 32sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  B  e.  ( 0 [,] +oo ) )
83 ifcl 3831 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ( 0 [,] +oo )  /\  0  e.  ( 0 [,] +oo ) )  ->  if ( x  e.  z ,  B ,  0 )  e.  ( 0 [,] +oo ) )
8482, 34, 83sylancl 662 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  if ( x  e.  z ,  B , 
0 )  e.  ( 0 [,] +oo )
)
8584adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  x  e.  RR )  ->  if ( x  e.  z ,  B ,  0 )  e.  ( 0 [,] +oo ) )
86 eqid 2443 . . . . . . . . . . . 12  |-  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )
8785, 86fmptd 5867 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) : RR --> ( 0 [,] +oo ) )
8887ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) : RR --> ( 0 [,] +oo ) )
8939adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,] +oo ) )
90 simpl 457 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( A  e. 
dom  vol  /\  B  e.  RR+ ) )
91 simprl 755 . . . . . . . . . . 11  |-  ( ( z  e.  dom  vol  /\  ( z  C_  A  /\  ( vol `  z
)  =  ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) )  ->  z  C_  A )
9279ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  B  e.  RR )
9392leidd 9906 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  B  <_  B )
94 iftrue 3797 . . . . . . . . . . . . . . . 16  |-  ( x  e.  z  ->  if ( x  e.  z ,  B ,  0 )  =  B )
9594adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  if (
x  e.  z ,  B ,  0 )  =  B )
96 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  ->  z  C_  A )
9796sselda 3356 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  x  e.  A )
98 iftrue 3797 . . . . . . . . . . . . . . . 16  |-  ( x  e.  A  ->  if ( x  e.  A ,  B ,  0 )  =  B )
9997, 98syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  if (
x  e.  A ,  B ,  0 )  =  B )
10093, 95, 993brtr4d 4322 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  x  e.  z
)  ->  if (
x  e.  z ,  B ,  0 )  <_  if ( x  e.  A ,  B ,  0 ) )
101 iffalse 3799 . . . . . . . . . . . . . . . 16  |-  ( -.  x  e.  z  ->  if ( x  e.  z ,  B ,  0 )  =  0 )
102101adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  -.  x  e.  z )  ->  if (
x  e.  z ,  B ,  0 )  =  0 )
103 0le0 10411 . . . . . . . . . . . . . . . . 17  |-  0  <_  0
104 breq2 4296 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  if ( x  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
105 breq2 4296 . . . . . . . . . . . . . . . . . 18  |-  ( 0  =  if ( x  e.  A ,  B ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
106104, 105ifboth 3825 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  B  /\  0  <_  0 )  -> 
0  <_  if (
x  e.  A ,  B ,  0 ) )
10781, 103, 106sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  0  <_  if (
x  e.  A ,  B ,  0 ) )
108107ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  -.  x  e.  z )  ->  0  <_  if ( x  e.  A ,  B ,  0 ) )
109102, 108eqbrtrd 4312 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  /\  -.  x  e.  z )  ->  if (
x  e.  z ,  B ,  0 )  <_  if ( x  e.  A ,  B ,  0 ) )
110100, 109pm2.61dan 789 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  z  C_  A )  /\  x  e.  RR )  ->  if ( x  e.  z ,  B ,  0 )  <_  if ( x  e.  A ,  B ,  0 ) )
111110ralrimiva 2799 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  z  C_  A
)  ->  A. x  e.  RR  if ( x  e.  z ,  B ,  0 )  <_  if ( x  e.  A ,  B ,  0 ) )
112 reex 9373 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
113112a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  RR  e.  _V )
114 eqidd 2444 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )
115 eqidd 2444 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
116113, 85, 36, 114, 115ofrfval2 6337 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  z ,  B ,  0 )  <_  if (
x  e.  A ,  B ,  0 ) ) )
117116biimpar 485 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  A. x  e.  RR  if ( x  e.  z ,  B ,  0 )  <_  if ( x  e.  A ,  B ,  0 ) )  ->  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
118111, 117syldan 470 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  z  C_  A
)  ->  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
11990, 91, 118syl2an 477 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  oR  <_  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
120 itg2le 21217 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) )  oR  <_  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )  <_ 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
12188, 89, 119, 120syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  z ,  B ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
12278, 121eqbrtrrd 4314 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
123 ltp1 10167 . . . . . . . . . 10  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  <  (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 ) )
124123ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  <  (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 ) )
125 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
12617ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  e.  RR )
127125, 126ltnled 9521 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  <  (
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  <->  -.  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  <_  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) ) )
128124, 127mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  ->  -.  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
129122, 128pm2.21dd 174 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( z  e. 
dom  vol  /\  ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) ) ) )  -> 
( vol* `  A )  e.  RR )
130129rexlimdvaa 2842 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( E. z  e.  dom  vol ( z 
C_  A  /\  ( vol `  z )  =  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B ) )  ->  ( vol* `  A )  e.  RR ) )
13159, 130syld 44 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A )  ->  ( vol* `  A )  e.  RR ) )
132131imp 429 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR+ )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) )  -> 
( vol* `  A )  e.  RR )
13352ad2antrr 725 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( vol `  A
)  e.  RR* )
13414, 133eqeltrrd 2518 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( vol* `  A )  e.  RR* )
13520rexrd 9433 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR* )
136 xrletri 11128 . . . . 5  |-  ( ( ( vol* `  A )  e.  RR*  /\  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  e.  RR* )  ->  (
( vol* `  A )  <_  (
( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  \/  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) ) )
137134, 135, 136syl2anc 661 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( ( vol* `  A )  <_  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  \/  ( ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  +  1 )  /  B )  <_  ( vol* `  A ) ) )
13824, 132, 137mpjaodan 784 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( vol* `  A )  e.  RR )
13914, 138eqeltrd 2517 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR+ )  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )  ->  ( vol `  A
)  e.  RR )
14012, 139impbida 828 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR+ )  ->  ( ( vol `  A
)  e.  RR  <->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   _Vcvv 2972    C_ wss 3328   ifcif 3791   class class class wbr 4292    e. cmpt 4350   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091    oRcofr 6319   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287   +oocpnf 9415   RR*cxr 9417    < clt 9418    <_ cle 9419    / cdiv 9993   RR+crp 10991   [,)cico 11302   [,]cicc 11303   vol*covol 20946   volcvol 20947   S.2citg2 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cc 8604  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-disj 4263  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-ofr 6321  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967  df-sum 13164  df-rest 14361  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-top 18503  df-bases 18505  df-topon 18506  df-cmp 18990  df-cncf 20454  df-ovol 20948  df-vol 20949  df-mbf 21099  df-itg1 21100  df-itg2 21101  df-0p 21148
This theorem is referenced by:  itg2gt0  21238
  Copyright terms: Public domain W3C validator