MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Unicode version

Theorem itg2cnlem1 21242
Description: Lemma for itgcn 21323. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
Assertion
Ref Expression
itg2cnlem1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Distinct variable groups:    x, n, F    ph, n, x

Proof of Theorem itg2cnlem1
Dummy variables  m  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5704 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
2 c0ex 9383 . . . . . . . . . 10  |-  0  e.  _V
31, 2ifex 3861 . . . . . . . . 9  |-  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  _V
4 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
54fvmpt2 5784 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x )  =  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 ) )
63, 5mpan2 671 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
76mpteq2dv 4382 . . . . . . 7  |-  ( x  e.  RR  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
87rneqd 5070 . . . . . 6  |-  ( x  e.  RR  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
98supeq1d 7699 . . . . 5  |-  ( x  e.  RR  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
109mpteq2ia 4377 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
11 nfcv 2582 . . . . 5  |-  F/_ y sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) ) ,  RR ,  <  )
12 nfcv 2582 . . . . . . . 8  |-  F/_ x NN
13 nfmpt1 4384 . . . . . . . . . . 11  |-  F/_ x
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )
1412, 13nfmpt 4383 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
15 nfcv 2582 . . . . . . . . . 10  |-  F/_ x m
1614, 15nffv 5701 . . . . . . . . 9  |-  F/_ x
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )
17 nfcv 2582 . . . . . . . . 9  |-  F/_ x
y
1816, 17nffv 5701 . . . . . . . 8  |-  F/_ x
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
1912, 18nfmpt 4383 . . . . . . 7  |-  F/_ x
( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
2019nfrn 5085 . . . . . 6  |-  F/_ x ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
21 nfcv 2582 . . . . . 6  |-  F/_ x RR
22 nfcv 2582 . . . . . 6  |-  F/_ x  <
2320, 21, 22nfsup 7704 . . . . 5  |-  F/_ x sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  )
24 fveq2 5694 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )
2524mpteq2dv 4382 . . . . . . . 8  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) ) )
26 breq2 4299 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
2726ifbid 3814 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
2827mpteq2dv 4382 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
2928fveq1d 5696 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3029cbvmptv 4386 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
31 eqid 2443 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )  =  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
32 reex 9376 . . . . . . . . . . . . 13  |-  RR  e.  _V
3332mptex 5951 . . . . . . . . . . . 12  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  e.  _V
3428, 31, 33fvmpt 5777 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
3534fveq1d 5696 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
3635mpteq2ia 4377 . . . . . . . . 9  |-  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3730, 36eqtr4i 2466 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) )
3825, 37syl6eq 2491 . . . . . . 7  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) ) )
3938rneqd 5070 . . . . . 6  |-  ( x  =  y  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) )
4039supeq1d 7699 . . . . 5  |-  ( x  =  y  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4111, 23, 40cbvmpt 4385 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4210, 41eqtr3i 2465 . . 3  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  ) )
43 fveq2 5694 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4443breq1d 4305 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
4544, 43ifbieq1d 3815 . . . . . 6  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4645cbvmptv 4386 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4734adantl 466 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
48 nnre 10332 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
4948ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR )
5049rexrd 9436 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR* )
51 elioopnf 11386 . . . . . . . . . . 11  |-  ( m  e.  RR*  ->  ( ( F `  y )  e.  ( m (,) +oo )  <->  ( ( F `
 y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
5250, 51syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
53 itg2cn.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
54 ffn 5562 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,) +oo )  ->  F  Fn  RR )
5553, 54syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  RR )
5655ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  F  Fn  RR )
57 elpreima 5826 . . . . . . . . . . . 12  |-  ( F  Fn  RR  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
59 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  y  e.  RR )
6059biantrurd 508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( y  e.  RR  /\  ( F `
 y )  e.  ( m (,) +oo ) ) ) )
6158, 60bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( F `  y
)  e.  ( m (,) +oo ) ) )
62 0re 9389 . . . . . . . . . . . . . . 15  |-  0  e.  RR
63 pnfxr 11095 . . . . . . . . . . . . . . 15  |- +oo  e.  RR*
64 icossre 11379 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
6562, 63, 64mp2an 672 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  C_  RR
66 fss 5570 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : RR --> RR )
6753, 65, 66sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  F : RR --> RR )
6867adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  F : RR
--> RR )
6968ffvelrnda 5846 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  e.  RR )
7069biantrurd 508 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
m  <  ( F `  y )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
7152, 61, 703bitr4d 285 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
m  <  ( F `  y ) ) )
7271notbid 294 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( -.  y  e.  ( `' F " ( m (,) +oo ) )  <->  -.  m  <  ( F `
 y ) ) )
73 eldif 3341 . . . . . . . . . 10  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  <->  ( y  e.  RR  /\  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7473baib 896 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7574adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7669, 49lenltd 9523 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  <_  m  <->  -.  m  <  ( F `  y
) ) )
7772, 75, 763bitr4d 285 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  ( F `  y )  <_  m
) )
7877ifbid 3814 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) )
7978mpteq2dva 4381 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) ) )
8046, 47, 793eqtr4a 2501 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( y  e.  RR  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) ) )
81 difss 3486 . . . . . 6  |-  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR
8281a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR )
83 rembl 21025 . . . . . 6  |-  RR  e.  dom  vol
8483a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  dom  vol )
85 fvex 5704 . . . . . . 7  |-  ( F `
 y )  e. 
_V
8685, 2ifex 3861 . . . . . 6  |-  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  e.  _V
8786a1i 11 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  e.  _V )
88 eldifn 3482 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )
8988adantl 466 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
90 iffalse 3802 . . . . . 6  |-  ( -.  y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  0 )
9189, 90syl 16 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  if (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  =  0 )
92 iftrue 3800 . . . . . . . . 9  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  ( F `  y ) )
9392mpteq2ia 4377 . . . . . . . 8  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
94 resmpt 5159 . . . . . . . . 9  |-  ( ( RR  \  ( `' F " ( m (,) +oo ) ) )  C_  RR  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) ) )
9581, 94ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
9693, 95eqtr4i 2466 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
9753feqmptd 5747 . . . . . . . . 9  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
98 itg2cn.2 . . . . . . . . 9  |-  ( ph  ->  F  e. MblFn )
9997, 98eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( F `  y ) )  e. MblFn )
100 mbfima 21113 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  F : RR
--> RR )  ->  ( `' F " ( m (,) +oo ) )  e.  dom  vol )
10198, 67, 100syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( m (,) +oo ) )  e.  dom  vol )
102 cmmbl 21019 . . . . . . . . 9  |-  ( ( `' F " ( m (,) +oo ) )  e.  dom  vol  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
103101, 102syl 16 . . . . . . . 8  |-  ( ph  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
104 mbfres 21125 . . . . . . . 8  |-  ( ( ( y  e.  RR  |->  ( F `  y ) )  e. MblFn  /\  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e. 
dom  vol )  ->  (
( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  e. MblFn )
10599, 103, 104syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  e. MblFn )
10696, 105syl5eqel 2527 . . . . . 6  |-  ( ph  ->  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
107106adantr 465 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  e. MblFn
)
10882, 84, 87, 91, 107mbfss 21127 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
10980, 108eqeltrd 2517 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  e. MblFn )
11053ffvelrnda 5846 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
111 0e0icopnf 11398 . . . . . . 7  |-  0  e.  ( 0 [,) +oo )
112 ifcl 3834 . . . . . . 7  |-  ( ( ( F `  x
)  e.  ( 0 [,) +oo )  /\  0  e.  ( 0 [,) +oo ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
113110, 111, 112sylancl 662 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  ( 0 [,) +oo ) )
114113adantlr 714 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
115 eqid 2443 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
116114, 115fmptd 5870 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
11747feq1d 5549 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) 
<->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,) +oo ) ) )
118116, 117mpbird 232 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) )
119 elrege0 11395 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
120110, 119sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
121120simpld 459 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
122121adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
123122adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  e.  RR )
124123leidd 9909 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  ( F `  x )
)
125 iftrue 3800 . . . . . . . . 9  |-  ( ( F `  x )  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
126125adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  =  ( F `  x ) )
12748ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  e.  RR )
128 peano2re 9545 . . . . . . . . . . 11  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
129127, 128syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( m  +  1 )  e.  RR )
130 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  m
)
131127lep1d 10267 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  <_  ( m  +  1 ) )
132123, 127, 129, 130, 131letrd 9531 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  (
m  +  1 ) )
133 iftrue 3800 . . . . . . . . 9  |-  ( ( F `  x )  <_  ( m  + 
1 )  ->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
134132, 133syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  =  ( F `  x ) )
135124, 126, 1343brtr4d 4325 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )
136 iffalse 3802 . . . . . . . . 9  |-  ( -.  ( F `  x
)  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
137136adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
138120simprd 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
139 0le0 10414 . . . . . . . . . . 11  |-  0  <_  0
140 breq2 4299 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
141 breq2 4299 . . . . . . . . . . . 12  |-  ( 0  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
142140, 141ifboth 3828 . . . . . . . . . . 11  |-  ( ( 0  <_  ( F `  x )  /\  0  <_  0 )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
143138, 139, 142sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
144143adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
145144adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
146137, 145eqbrtrd 4315 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
147135, 146pm2.61dan 789 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
148147ralrimiva 2802 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
1491, 2ifex 3861 . . . . . . 7  |-  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  e.  _V
150149a1i 11 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 )  e.  _V )
151 eqidd 2444 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )
152 eqidd 2444 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
15384, 114, 150, 151, 152ofrfval2 6340 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  ( x  e.  RR  |->  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
154148, 153mpbird 232 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
155 peano2nn 10337 . . . . . 6  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
156155adantl 466 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e.  NN )
157 breq2 4299 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  (
m  +  1 ) ) )
158157ifbid 3814 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
159158mpteq2dv 4382 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
16032mptex 5951 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  e.  _V
161159, 31, 160fvmpt 5777 . . . . 5  |-  ( ( m  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
162156, 161syl 16 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
163154, 47, 1623brtr4d 4325 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  oR  <_  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  (
m  +  1 ) ) )
16467ffvelrnda 5846 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
16534adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
166165fveq1d 5696 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
167121leidd 9909 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_ 
( F `  x
) )
168 breq1 4298 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( ( F `  x )  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
169 breq1 4298 . . . . . . . . . . . . . 14  |-  ( 0  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
170168, 169ifboth 3828 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  <_  ( F `  x )  /\  0  <_  ( F `  x
) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
171167, 138, 170syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  ( F `  x ) )
172171adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
173172ralrimiva 2802 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) )
17432a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
1751, 2ifex 3861 . . . . . . . . . . . 12  |-  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  _V
176175a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  _V )
17753feqmptd 5747 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
178177adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
179174, 176, 122, 151, 178ofrfval2 6340 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) ) )
180173, 179mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_  F )
181176, 115fmptd 5870 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> _V )
182 ffn 5562 . . . . . . . . . . 11  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> _V  ->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  Fn  RR )
183181, 182syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  Fn  RR )
18455adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  F  Fn  RR )
185 inidm 3562 . . . . . . . . . 10  |-  ( RR 
i^i  RR )  =  RR
186 eqidd 2444 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
187 eqidd 2444 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
188183, 184, 174, 174, 185, 186, 187ofrfval 6331 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) ) )
189180, 188mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) )
190189r19.21bi 2817 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
191190an32s 802 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
192166, 191eqbrtrd 4315 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )
193192ralrimiva 2802 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) )
194 breq2 4299 . . . . . 6  |-  ( z  =  ( F `  y )  ->  (
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) ) )
195194ralbidv 2738 . . . . 5  |-  ( z  =  ( F `  y )  ->  ( A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  ( F `  y
) ) )
196195rspcev 3076 . . . 4  |-  ( ( ( F `  y
)  e.  RR  /\  A. m  e.  NN  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
197164, 193, 196syl2anc 661 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
19828fveq2d 5698 . . . . . . 7  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
199198cbvmptv 4386 . . . . . 6  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
20034fveq2d 5698 . . . . . . 7  |-  ( m  e.  NN  ->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
201200mpteq2ia 4377 . . . . . 6  |-  ( m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )  =  ( m  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
202199, 201eqtr4i 2466 . . . . 5  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
203202rneqi 5069 . . . 4  |-  ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  =  ran  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
204203supeq1i 7700 . . 3  |-  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  sup ( ran  (
m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) ) ,  RR* ,  <  )
20542, 109, 118, 163, 197, 204itg2mono 21234 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  ) )
206 eqid 2443 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
20727, 206, 175fvmpt 5777 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
208207adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
209171adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
210208, 209eqbrtrd 4315 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) )
211210ralrimiva 2802 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) )
2123a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )
213212, 206fmptd 5870 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> _V )
214 ffn 5562 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> _V  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
215213, 214syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  Fn  NN )
216 breq1 4298 . . . . . . . . . 10  |-  ( w  =  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  ->  ( w  <_ 
( F `  x
)  <->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
217216ralrn 5849 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  ->  ( A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
218215, 217syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) ) )
219211, 218mpbird 232 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) )
220121adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( F `  x )  e.  RR )
221 ifcl 3834 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  RR  /\  0  e.  RR )  ->  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
222220, 62, 221sylancl 662 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
223222, 206fmptd 5870 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> RR )
224 frn 5568 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> RR  ->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR )
225223, 224syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  C_  RR )
226 1nn 10336 . . . . . . . . . 10  |-  1  e.  NN
227 fdm 5566 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> RR  ->  dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  NN )
228223, 227syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  NN )
229226, 228syl5eleqr 2530 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  1  e. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
230 n0i 3645 . . . . . . . . . 10  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  -.  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
231 dm0rn0 5059 . . . . . . . . . . 11  |-  ( dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
232231necon3bbii 2642 . . . . . . . . . 10  |-  ( -. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
233230, 232sylib 196 . . . . . . . . 9  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =/=  (/) )
234229, 233syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
235 breq2 4299 . . . . . . . . . . 11  |-  ( z  =  ( F `  x )  ->  (
w  <_  z  <->  w  <_  ( F `  x ) ) )
236235ralbidv 2738 . . . . . . . . . 10  |-  ( z  =  ( F `  x )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
z  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
237236rspcev 3076 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  RR  /\  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
238121, 219, 237syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
239 suprleub 10297 . . . . . . . 8  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
240225, 234, 238, 121, 239syl31anc 1221 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) ) )
241219, 240mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )
)
242 arch 10579 . . . . . . . . 9  |-  ( ( F `  x )  e.  RR  ->  E. m  e.  NN  ( F `  x )  <  m
)
243121, 242syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. m  e.  NN  ( F `  x )  <  m
)
244207ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )
245 ltle 9466 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  RR  /\  m  e.  RR )  ->  ( ( F `  x )  <  m  ->  ( F `  x
)  <_  m )
)
246121, 48, 245syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( F `  x
)  <  m  ->  ( F `  x )  <_  m ) )
247246impr 619 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  <_  m
)
248247, 125syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `  x
) )
249244, 248eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  ( F `  x ) )
250215adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
251 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  m  e.  NN )
252 fnfvelrn 5843 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
253250, 251, 252syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
254249, 253eqeltrrd 2518 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
255243, 254rexlimddv 2848 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
256 suprub 10294 . . . . . . 7  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  -> 
( F `  x
)  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
257225, 234, 238, 255, 256syl31anc 1221 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )
258 suprcl 10293 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  ->  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
259225, 234, 238, 258syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
260259, 121letri3d 9519 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  =  ( F `
 x )  <->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  /\  ( F `  x )  <_  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) ) ) )
261241, 257, 260mpbir2and 913 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  =  ( F `  x ) )
262261mpteq2dva 4381 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  ( F `  x ) ) )
263262, 177eqtr4d 2478 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  F )
264263fveq2d 5698 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  ( S.2 `  F
) )
265205, 264eqtr3d 2477 1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2609   A.wral 2718   E.wrex 2719   _Vcvv 2975    \ cdif 3328    C_ wss 3331   (/)c0 3640   ifcif 3794   class class class wbr 4295    e. cmpt 4353   `'ccnv 4842   dom cdm 4843   ran crn 4844    |` cres 4845   "cima 4846    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094    oRcofr 6322   supcsup 7693   RRcr 9284   0cc0 9285   1c1 9286    + caddc 9288   +oocpnf 9418   RR*cxr 9420    < clt 9421    <_ cle 9422   NNcn 10325   (,)cioo 11303   [,)cico 11305   volcvol 20950  MblFncmbf 21097   S.2citg2 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cc 8607  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-omul 6928  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-acn 8115  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ioc 11308  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-rlim 12970  df-sum 13167  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104
This theorem is referenced by:  itg2cn  21244
  Copyright terms: Public domain W3C validator