MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Unicode version

Theorem itg2cnlem1 21896
Description: Lemma for itgcn 21977. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
Assertion
Ref Expression
itg2cnlem1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Distinct variable groups:    x, n, F    ph, n, x

Proof of Theorem itg2cnlem1
Dummy variables  m  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5867 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
2 c0ex 9579 . . . . . . . . . 10  |-  0  e.  _V
31, 2ifex 4001 . . . . . . . . 9  |-  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  _V
4 eqid 2460 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
54fvmpt2 5948 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x )  =  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 ) )
63, 5mpan2 671 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
76mpteq2dv 4527 . . . . . . 7  |-  ( x  e.  RR  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
87rneqd 5221 . . . . . 6  |-  ( x  e.  RR  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
98supeq1d 7895 . . . . 5  |-  ( x  e.  RR  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
109mpteq2ia 4522 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
11 nfcv 2622 . . . . 5  |-  F/_ y sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) ) ,  RR ,  <  )
12 nfcv 2622 . . . . . . . 8  |-  F/_ x NN
13 nfmpt1 4529 . . . . . . . . . . 11  |-  F/_ x
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )
1412, 13nfmpt 4528 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
15 nfcv 2622 . . . . . . . . . 10  |-  F/_ x m
1614, 15nffv 5864 . . . . . . . . 9  |-  F/_ x
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )
17 nfcv 2622 . . . . . . . . 9  |-  F/_ x
y
1816, 17nffv 5864 . . . . . . . 8  |-  F/_ x
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
1912, 18nfmpt 4528 . . . . . . 7  |-  F/_ x
( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
2019nfrn 5236 . . . . . 6  |-  F/_ x ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
21 nfcv 2622 . . . . . 6  |-  F/_ x RR
22 nfcv 2622 . . . . . 6  |-  F/_ x  <
2320, 21, 22nfsup 7900 . . . . 5  |-  F/_ x sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  )
24 fveq2 5857 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )
2524mpteq2dv 4527 . . . . . . . 8  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) ) )
26 breq2 4444 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
2726ifbid 3954 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
2827mpteq2dv 4527 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
2928fveq1d 5859 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3029cbvmptv 4531 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
31 eqid 2460 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )  =  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
32 reex 9572 . . . . . . . . . . . . 13  |-  RR  e.  _V
3332mptex 6122 . . . . . . . . . . . 12  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  e.  _V
3428, 31, 33fvmpt 5941 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
3534fveq1d 5859 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
3635mpteq2ia 4522 . . . . . . . . 9  |-  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3730, 36eqtr4i 2492 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) )
3825, 37syl6eq 2517 . . . . . . 7  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) ) )
3938rneqd 5221 . . . . . 6  |-  ( x  =  y  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) )
4039supeq1d 7895 . . . . 5  |-  ( x  =  y  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4111, 23, 40cbvmpt 4530 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4210, 41eqtr3i 2491 . . 3  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  ) )
43 fveq2 5857 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4443breq1d 4450 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
4544, 43ifbieq1d 3955 . . . . . 6  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4645cbvmptv 4531 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4734adantl 466 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
48 nnre 10532 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
4948ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR )
5049rexrd 9632 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR* )
51 elioopnf 11607 . . . . . . . . . . 11  |-  ( m  e.  RR*  ->  ( ( F `  y )  e.  ( m (,) +oo )  <->  ( ( F `
 y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
5250, 51syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
53 itg2cn.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
54 ffn 5722 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,) +oo )  ->  F  Fn  RR )
5553, 54syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  RR )
5655ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  F  Fn  RR )
57 elpreima 5992 . . . . . . . . . . . 12  |-  ( F  Fn  RR  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
59 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  y  e.  RR )
6059biantrurd 508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( y  e.  RR  /\  ( F `
 y )  e.  ( m (,) +oo ) ) ) )
6158, 60bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( F `  y
)  e.  ( m (,) +oo ) ) )
62 0re 9585 . . . . . . . . . . . . . . 15  |-  0  e.  RR
63 pnfxr 11310 . . . . . . . . . . . . . . 15  |- +oo  e.  RR*
64 icossre 11594 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
6562, 63, 64mp2an 672 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  C_  RR
66 fss 5730 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : RR --> RR )
6753, 65, 66sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  F : RR --> RR )
6867adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  F : RR
--> RR )
6968ffvelrnda 6012 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  e.  RR )
7069biantrurd 508 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
m  <  ( F `  y )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
7152, 61, 703bitr4d 285 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
m  <  ( F `  y ) ) )
7271notbid 294 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( -.  y  e.  ( `' F " ( m (,) +oo ) )  <->  -.  m  <  ( F `
 y ) ) )
73 eldif 3479 . . . . . . . . . 10  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  <->  ( y  e.  RR  /\  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7473baib 898 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7574adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7669, 49lenltd 9719 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  <_  m  <->  -.  m  <  ( F `  y
) ) )
7772, 75, 763bitr4d 285 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  ( F `  y )  <_  m
) )
7877ifbid 3954 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) )
7978mpteq2dva 4526 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) ) )
8046, 47, 793eqtr4a 2527 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( y  e.  RR  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) ) )
81 difss 3624 . . . . . 6  |-  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR
8281a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR )
83 rembl 21679 . . . . . 6  |-  RR  e.  dom  vol
8483a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  dom  vol )
85 fvex 5867 . . . . . . 7  |-  ( F `
 y )  e. 
_V
8685, 2ifex 4001 . . . . . 6  |-  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  e.  _V
8786a1i 11 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  e.  _V )
88 eldifn 3620 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )
8988adantl 466 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
90 iffalse 3941 . . . . . 6  |-  ( -.  y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  0 )
9189, 90syl 16 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  if (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  =  0 )
92 iftrue 3938 . . . . . . . . 9  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  ( F `  y ) )
9392mpteq2ia 4522 . . . . . . . 8  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
94 resmpt 5314 . . . . . . . . 9  |-  ( ( RR  \  ( `' F " ( m (,) +oo ) ) )  C_  RR  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) ) )
9581, 94ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
9693, 95eqtr4i 2492 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
9753feqmptd 5911 . . . . . . . . 9  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
98 itg2cn.2 . . . . . . . . 9  |-  ( ph  ->  F  e. MblFn )
9997, 98eqeltrrd 2549 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( F `  y ) )  e. MblFn )
100 mbfima 21767 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  F : RR
--> RR )  ->  ( `' F " ( m (,) +oo ) )  e.  dom  vol )
10198, 67, 100syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( m (,) +oo ) )  e.  dom  vol )
102 cmmbl 21673 . . . . . . . . 9  |-  ( ( `' F " ( m (,) +oo ) )  e.  dom  vol  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
103101, 102syl 16 . . . . . . . 8  |-  ( ph  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
104 mbfres 21779 . . . . . . . 8  |-  ( ( ( y  e.  RR  |->  ( F `  y ) )  e. MblFn  /\  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e. 
dom  vol )  ->  (
( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  e. MblFn )
10599, 103, 104syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  e. MblFn )
10696, 105syl5eqel 2552 . . . . . 6  |-  ( ph  ->  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
107106adantr 465 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  e. MblFn
)
10882, 84, 87, 91, 107mbfss 21781 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
10980, 108eqeltrd 2548 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  e. MblFn )
11053ffvelrnda 6012 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
111 0e0icopnf 11619 . . . . . . 7  |-  0  e.  ( 0 [,) +oo )
112 ifcl 3974 . . . . . . 7  |-  ( ( ( F `  x
)  e.  ( 0 [,) +oo )  /\  0  e.  ( 0 [,) +oo ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
113110, 111, 112sylancl 662 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  ( 0 [,) +oo ) )
114113adantlr 714 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
115 eqid 2460 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
116114, 115fmptd 6036 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
11747feq1d 5708 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) 
<->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,) +oo ) ) )
118116, 117mpbird 232 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) )
119 elrege0 11616 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
120110, 119sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
121120simpld 459 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
122121adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
123122adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  e.  RR )
124123leidd 10108 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  ( F `  x )
)
125 iftrue 3938 . . . . . . . . 9  |-  ( ( F `  x )  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
126125adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  =  ( F `  x ) )
12748ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  e.  RR )
128 peano2re 9741 . . . . . . . . . . 11  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
129127, 128syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( m  +  1 )  e.  RR )
130 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  m
)
131127lep1d 10466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  <_  ( m  +  1 ) )
132123, 127, 129, 130, 131letrd 9727 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  (
m  +  1 ) )
133 iftrue 3938 . . . . . . . . 9  |-  ( ( F `  x )  <_  ( m  + 
1 )  ->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
134132, 133syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  =  ( F `  x ) )
135124, 126, 1343brtr4d 4470 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )
136 iffalse 3941 . . . . . . . . 9  |-  ( -.  ( F `  x
)  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
137136adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
138120simprd 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
139 0le0 10614 . . . . . . . . . . 11  |-  0  <_  0
140 breq2 4444 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
141 breq2 4444 . . . . . . . . . . . 12  |-  ( 0  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
142140, 141ifboth 3968 . . . . . . . . . . 11  |-  ( ( 0  <_  ( F `  x )  /\  0  <_  0 )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
143138, 139, 142sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
144143adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
145144adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
146137, 145eqbrtrd 4460 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
147135, 146pm2.61dan 789 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
148147ralrimiva 2871 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
1491, 2ifex 4001 . . . . . . 7  |-  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  e.  _V
150149a1i 11 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 )  e.  _V )
151 eqidd 2461 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )
152 eqidd 2461 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
15384, 114, 150, 151, 152ofrfval2 6532 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  ( x  e.  RR  |->  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
154148, 153mpbird 232 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
155 peano2nn 10537 . . . . . 6  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
156155adantl 466 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e.  NN )
157 breq2 4444 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  (
m  +  1 ) ) )
158157ifbid 3954 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
159158mpteq2dv 4527 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
16032mptex 6122 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  e.  _V
161159, 31, 160fvmpt 5941 . . . . 5  |-  ( ( m  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
162156, 161syl 16 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
163154, 47, 1623brtr4d 4470 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  oR  <_  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  (
m  +  1 ) ) )
16467ffvelrnda 6012 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
16534adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
166165fveq1d 5859 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
167121leidd 10108 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_ 
( F `  x
) )
168 breq1 4443 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( ( F `  x )  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
169 breq1 4443 . . . . . . . . . . . . . 14  |-  ( 0  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
170168, 169ifboth 3968 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  <_  ( F `  x )  /\  0  <_  ( F `  x
) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
171167, 138, 170syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  ( F `  x ) )
172171adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
173172ralrimiva 2871 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) )
17432a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
1751, 2ifex 4001 . . . . . . . . . . . 12  |-  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  _V
176175a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  _V )
17753feqmptd 5911 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
178177adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
179174, 176, 122, 151, 178ofrfval2 6532 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) ) )
180173, 179mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_  F )
181176, 115fmptd 6036 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> _V )
182 ffn 5722 . . . . . . . . . . 11  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> _V  ->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  Fn  RR )
183181, 182syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  Fn  RR )
18455adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  F  Fn  RR )
185 inidm 3700 . . . . . . . . . 10  |-  ( RR 
i^i  RR )  =  RR
186 eqidd 2461 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
187 eqidd 2461 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
188183, 184, 174, 174, 185, 186, 187ofrfval 6523 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) ) )
189180, 188mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) )
190189r19.21bi 2826 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
191190an32s 802 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
192166, 191eqbrtrd 4460 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )
193192ralrimiva 2871 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) )
194 breq2 4444 . . . . . 6  |-  ( z  =  ( F `  y )  ->  (
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) ) )
195194ralbidv 2896 . . . . 5  |-  ( z  =  ( F `  y )  ->  ( A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  ( F `  y
) ) )
196195rspcev 3207 . . . 4  |-  ( ( ( F `  y
)  e.  RR  /\  A. m  e.  NN  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
197164, 193, 196syl2anc 661 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
19828fveq2d 5861 . . . . . . 7  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
199198cbvmptv 4531 . . . . . 6  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
20034fveq2d 5861 . . . . . . 7  |-  ( m  e.  NN  ->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
201200mpteq2ia 4522 . . . . . 6  |-  ( m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )  =  ( m  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
202199, 201eqtr4i 2492 . . . . 5  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
203202rneqi 5220 . . . 4  |-  ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  =  ran  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
204203supeq1i 7896 . . 3  |-  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  sup ( ran  (
m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) ) ,  RR* ,  <  )
20542, 109, 118, 163, 197, 204itg2mono 21888 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  ) )
206 eqid 2460 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
20727, 206, 175fvmpt 5941 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
208207adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
209171adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
210208, 209eqbrtrd 4460 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) )
211210ralrimiva 2871 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) )
2123a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )
213212, 206fmptd 6036 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> _V )
214 ffn 5722 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> _V  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
215213, 214syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  Fn  NN )
216 breq1 4443 . . . . . . . . . 10  |-  ( w  =  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  ->  ( w  <_ 
( F `  x
)  <->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
217216ralrn 6015 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  ->  ( A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
218215, 217syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) ) )
219211, 218mpbird 232 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) )
220121adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( F `  x )  e.  RR )
221 ifcl 3974 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  RR  /\  0  e.  RR )  ->  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
222220, 62, 221sylancl 662 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
223222, 206fmptd 6036 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> RR )
224 frn 5728 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> RR  ->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR )
225223, 224syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  C_  RR )
226 1nn 10536 . . . . . . . . . 10  |-  1  e.  NN
227 fdm 5726 . . . . . . . . . . 11  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> RR  ->  dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  NN )
228223, 227syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  NN )
229226, 228syl5eleqr 2555 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  1  e. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
230 n0i 3783 . . . . . . . . . 10  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  -.  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
231 dm0rn0 5210 . . . . . . . . . . 11  |-  ( dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
232231necon3bbii 2721 . . . . . . . . . 10  |-  ( -. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
233230, 232sylib 196 . . . . . . . . 9  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =/=  (/) )
234229, 233syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
235 breq2 4444 . . . . . . . . . . 11  |-  ( z  =  ( F `  x )  ->  (
w  <_  z  <->  w  <_  ( F `  x ) ) )
236235ralbidv 2896 . . . . . . . . . 10  |-  ( z  =  ( F `  x )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
z  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
237236rspcev 3207 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  RR  /\  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
238121, 219, 237syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
239 suprleub 10496 . . . . . . . 8  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
240225, 234, 238, 121, 239syl31anc 1226 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) ) )
241219, 240mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )
)
242 arch 10781 . . . . . . . . 9  |-  ( ( F `  x )  e.  RR  ->  E. m  e.  NN  ( F `  x )  <  m
)
243121, 242syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. m  e.  NN  ( F `  x )  <  m
)
244207ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )
245 ltle 9662 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  RR  /\  m  e.  RR )  ->  ( ( F `  x )  <  m  ->  ( F `  x
)  <_  m )
)
246121, 48, 245syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( F `  x
)  <  m  ->  ( F `  x )  <_  m ) )
247246impr 619 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  <_  m
)
248247, 125syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `  x
) )
249244, 248eqtrd 2501 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  ( F `  x ) )
250215adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
251 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  m  e.  NN )
252 fnfvelrn 6009 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
253250, 251, 252syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
254249, 253eqeltrrd 2549 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
255243, 254rexlimddv 2952 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
256 suprub 10493 . . . . . . 7  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  -> 
( F `  x
)  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
257225, 234, 238, 255, 256syl31anc 1226 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )
258 suprcl 10492 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  ->  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
259225, 234, 238, 258syl3anc 1223 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
260259, 121letri3d 9715 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  =  ( F `
 x )  <->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  /\  ( F `  x )  <_  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) ) ) )
261241, 257, 260mpbir2and 915 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  =  ( F `  x ) )
262261mpteq2dva 4526 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  ( F `  x ) ) )
263262, 177eqtr4d 2504 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  F )
264263fveq2d 5861 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  ( S.2 `  F
) )
265205, 264eqtr3d 2503 1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   _Vcvv 3106    \ cdif 3466    C_ wss 3469   (/)c0 3778   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   `'ccnv 4991   dom cdm 4992   ran crn 4993    |` cres 4994   "cima 4995    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275    oRcofr 6514   supcsup 7889   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484   +oocpnf 9614   RR*cxr 9616    < clt 9617    <_ cle 9618   NNcn 10525   (,)cioo 11518   [,)cico 11520   volcvol 21603  MblFncmbf 21751   S.2citg2 21753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cc 8804  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-omul 7125  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-rest 14667  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-top 19159  df-bases 19161  df-topon 19162  df-cmp 19646  df-ovol 21604  df-vol 21605  df-mbf 21756  df-itg1 21757  df-itg2 21758
This theorem is referenced by:  itg2cn  21898
  Copyright terms: Public domain W3C validator