MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   Unicode version

Theorem itg2cn 22769
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 23037 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2cn.4  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itg2cn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Distinct variable groups:    u, d, x, C    F, d, u, x    ph, u, x
Allowed substitution hint:    ph( d)

Proof of Theorem itg2cn
Dummy variables  m  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
2 itg2cn.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
32rphalfcld 11381 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
41, 3ltsubrpd 11398 . . . . 5  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <  ( S.2 `  F
) )
53rpred 11369 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
61, 5resubcld 10074 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR )
76, 1ltnled 9807 . . . . 5  |-  ( ph  ->  ( ( ( S.2 `  F )  -  ( C  /  2 ) )  <  ( S.2 `  F
)  <->  -.  ( S.2 `  F )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
84, 7mpbid 215 . . . 4  |-  ( ph  ->  -.  ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) )
9 itg2cn.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
109ffvelrnda 6044 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
11 elrege0 11766 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1210, 11sylib 201 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1312simpld 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1413rexrd 9715 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
RR* )
1512simprd 469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
16 elxrge0 11769 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,] +oo )  <->  ( ( F `
 x )  e. 
RR*  /\  0  <_  ( F `  x ) ) )
1714, 15, 16sylanbrc 675 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,] +oo ) )
18 0e0iccpnf 11771 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] +oo )
19 ifcl 3934 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  ( 0 [,] +oo )  /\  0  e.  ( 0 [,] +oo ) )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,] +oo ) )
2017, 18, 19sylancl 673 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  ( 0 [,] +oo ) )
2120adantlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,] +oo ) )
22 eqid 2461 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
2321, 22fmptd 6068 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
24 itg2cl 22738 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,] +oo )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
2523, 24syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
26 eqid 2461 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )
2725, 26fmptd 6068 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR* )
28 frn 5757 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
2927, 28syl 17 . . . . . 6  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
306rexrd 9715 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR* )
31 supxrleub 11640 . . . . . 6  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR*  /\  ( ( S.2 `  F )  -  ( C  / 
2 ) )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) ,  RR* ,  <  )  <_  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
3229, 30, 31syl2anc 671 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
33 itg2cn.2 . . . . . . 7  |-  ( ph  ->  F  e. MblFn )
349, 33, 1itg2cnlem1 22767 . . . . . 6  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
3534breq1d 4425 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
36 ffn 5750 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  Fn  NN )
3727, 36syl 17 . . . . . 6  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN )
38 breq1 4418 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  -> 
( z  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
3938ralrn 6047 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
40 breq2 4419 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
4140ifbid 3914 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
4241mpteq2dv 4503 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
4342fveq2d 5891 . . . . . . . . . 10  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
44 fvex 5897 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  e. 
_V
4543, 26, 44fvmpt 5970 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
4645breq1d 4425 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
4746ralbiia 2829 . . . . . . 7  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
4839, 47syl6bb 269 . . . . . 6  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
4937, 48syl 17 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5032, 35, 493bitr3d 291 . . . 4  |-  ( ph  ->  ( ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
518, 50mtbid 306 . . 3  |-  ( ph  ->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
52 rexnal 2847 . . 3  |-  ( E. m  e.  NN  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5351, 52sylibr 217 . 2  |-  ( ph  ->  E. m  e.  NN  -.  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
549adantr 471 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F : RR --> ( 0 [,) +oo ) )
5533adantr 471 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F  e. MblFn )
561adantr 471 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  ( S.2 `  F
)  e.  RR )
572adantr 471 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  C  e.  RR+ )
58 simprl 769 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  m  e.  NN )
59 simprr 771 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
60 fveq2 5887 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
6160breq1d 4425 . . . . . . . . 9  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
6261, 60ifbieq1d 3915 . . . . . . . 8  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6362cbvmptv 4508 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6463fveq2i 5890 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )
6564breq1i 4422 . . . . 5  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
6659, 65sylnib 310 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
6754, 55, 56, 57, 58, 66itg2cnlem2 22768 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
68 elequ1 1904 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  u  <->  y  e.  u ) )
6968, 60ifbieq1d 3915 . . . . . . . . 9  |-  ( x  =  y  ->  if ( x  e.  u ,  ( F `  x ) ,  0 )  =  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7069cbvmptv 4508 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7170fveq2i 5890 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )
7271breq1i 4422 . . . . . 6  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
)
7372imbi2i 318 . . . . 5  |-  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  < 
C ) )
7473ralbii 2830 . . . 4  |-  ( A. u  e.  dom  vol (
( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
7574rexbii 2900 . . 3  |-  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  <  C )  <->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  <  C ) )
7667, 75sylibr 217 . 2  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
7753, 76rexlimddv 2894 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    e. wcel 1897   A.wral 2748   E.wrex 2749    C_ wss 3415   ifcif 3892   class class class wbr 4415    |-> cmpt 4474   dom cdm 4852   ran crn 4853    Fn wfn 5595   -->wf 5596   ` cfv 5600  (class class class)co 6314   supcsup 7979   RRcr 9563   0cc0 9564   +oocpnf 9697   RR*cxr 9699    < clt 9700    <_ cle 9701    - cmin 9885    / cdiv 10296   NNcn 10636   2c2 10686   RR+crp 11330   [,)cico 11665   [,]cicc 11666   volcvol 22463  MblFncmbf 22620   S.2citg2 22622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-inf2 8171  ax-cc 8890  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642  ax-addf 9643
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-disj 4387  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-of 6557  df-ofr 6558  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-2o 7208  df-oadd 7211  df-omul 7212  df-er 7388  df-map 7499  df-pm 7500  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-fi 7950  df-sup 7981  df-inf 7982  df-oi 8050  df-card 8398  df-acn 8401  df-cda 8623  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297  df-nn 10637  df-2 10695  df-3 10696  df-n0 10898  df-z 10966  df-uz 11188  df-q 11293  df-rp 11331  df-xneg 11437  df-xadd 11438  df-xmul 11439  df-ioo 11667  df-ioc 11668  df-ico 11669  df-icc 11670  df-fz 11813  df-fzo 11946  df-fl 12059  df-seq 12245  df-exp 12304  df-hash 12547  df-cj 13210  df-re 13211  df-im 13212  df-sqrt 13346  df-abs 13347  df-clim 13600  df-rlim 13601  df-sum 13801  df-rest 15369  df-topgen 15390  df-psmet 19010  df-xmet 19011  df-met 19012  df-bl 19013  df-mopn 19014  df-top 19969  df-bases 19970  df-topon 19971  df-cmp 20450  df-ovol 22464  df-vol 22466  df-mbf 22625  df-itg1 22626  df-itg2 22627  df-0p 22676
This theorem is referenced by:  itgcn  22848
  Copyright terms: Public domain W3C validator