MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val2 Structured version   Unicode version

Theorem itg1val2 22257
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1val2  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  ( S.1 `  F )  =  sum_ x  e.  A  ( x  x.  ( vol `  ( `' F " { x } ) ) ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem itg1val2
StepHypRef Expression
1 itg1val 22256 . . 3  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ x  e.  ( ran  F  \  {
0 } ) ( x  x.  ( vol `  ( `' F " { x } ) ) ) )
21adantr 463 . 2  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  ( S.1 `  F )  =  sum_ x  e.  ( ran  F  \  { 0 } ) ( x  x.  ( vol `  ( `' F " { x } ) ) ) )
3 simpr2 1001 . . 3  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  ( ran  F 
\  { 0 } )  C_  A )
43sselda 3489 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( ran  F  \  { 0 } ) )  ->  x  e.  A )
5 simpr3 1002 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  A  C_  ( RR  \  { 0 } ) )
65sselda 3489 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  A )  ->  x  e.  ( RR  \  {
0 } ) )
7 eldifi 3612 . . . . . . 7  |-  ( x  e.  ( RR  \  { 0 } )  ->  x  e.  RR )
86, 7syl 16 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  A )  ->  x  e.  RR )
9 i1fima2sn 22253 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  x  e.  ( RR 
\  { 0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
109adantlr 712 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( RR  \  {
0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
116, 10syldan 468 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  A )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
128, 11remulcld 9613 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  A )  ->  (
x  x.  ( vol `  ( `' F " { x } ) ) )  e.  RR )
1312recnd 9611 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  A )  ->  (
x  x.  ( vol `  ( `' F " { x } ) ) )  e.  CC )
144, 13syldan 468 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( ran  F  \  { 0 } ) )  ->  ( x  x.  ( vol `  ( `' F " { x } ) ) )  e.  CC )
15 i1ff 22249 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
1615ad2antrr 723 . . . . . . . . 9  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  F : RR --> RR )
17 ffn 5713 . . . . . . . . . 10  |-  ( F : RR --> RR  ->  F  Fn  RR )
18 dffn3 5720 . . . . . . . . . 10  |-  ( F  Fn  RR  <->  F : RR
--> ran  F )
1917, 18sylib 196 . . . . . . . . 9  |-  ( F : RR --> RR  ->  F : RR --> ran  F
)
2016, 19syl 16 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  F : RR --> ran  F )
21 eldifn 3613 . . . . . . . . . . 11  |-  ( x  e.  ( A  \ 
( ran  F  \  {
0 } ) )  ->  -.  x  e.  ( ran  F  \  {
0 } ) )
2221adantl 464 . . . . . . . . . 10  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  -.  x  e.  ( ran  F  \  {
0 } ) )
23 simplr3 1038 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  A  C_  ( RR  \  { 0 } ) )
2423ssdifssd 3628 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( A  \ 
( ran  F  \  {
0 } ) ) 
C_  ( RR  \  { 0 } ) )
25 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  x  e.  ( A  \  ( ran 
F  \  { 0 } ) ) )
2624, 25sseldd 3490 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  x  e.  ( RR  \  { 0 } ) )
27 eldifn 3613 . . . . . . . . . . . . 13  |-  ( x  e.  ( RR  \  { 0 } )  ->  -.  x  e.  { 0 } )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  -.  x  e.  { 0 } )
2928biantrud 505 . . . . . . . . . . 11  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( x  e. 
ran  F  <->  ( x  e. 
ran  F  /\  -.  x  e.  { 0 } ) ) )
30 eldif 3471 . . . . . . . . . . 11  |-  ( x  e.  ( ran  F  \  { 0 } )  <-> 
( x  e.  ran  F  /\  -.  x  e. 
{ 0 } ) )
3129, 30syl6rbbr 264 . . . . . . . . . 10  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( x  e.  ( ran  F  \  { 0 } )  <-> 
x  e.  ran  F
) )
3222, 31mtbid 298 . . . . . . . . 9  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  -.  x  e.  ran  F )
33 disjsn 4076 . . . . . . . . 9  |-  ( ( ran  F  i^i  {
x } )  =  (/) 
<->  -.  x  e.  ran  F )
3432, 33sylibr 212 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( ran  F  i^i  { x } )  =  (/) )
35 fimacnvdisj 5745 . . . . . . . 8  |-  ( ( F : RR --> ran  F  /\  ( ran  F  i^i  { x } )  =  (/) )  ->  ( `' F " { x } )  =  (/) )
3620, 34, 35syl2anc 659 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( `' F " { x } )  =  (/) )
3736fveq2d 5852 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( vol `  ( `' F " { x } ) )  =  ( vol `  (/) ) )
38 0mbl 22116 . . . . . . . 8  |-  (/)  e.  dom  vol
39 mblvol 22107 . . . . . . . 8  |-  ( (/)  e.  dom  vol  ->  ( vol `  (/) )  =  ( vol* `  (/) ) )
4038, 39ax-mp 5 . . . . . . 7  |-  ( vol `  (/) )  =  ( vol* `  (/) )
41 ovol0 22070 . . . . . . 7  |-  ( vol* `  (/) )  =  0
4240, 41eqtri 2483 . . . . . 6  |-  ( vol `  (/) )  =  0
4337, 42syl6eq 2511 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( vol `  ( `' F " { x } ) )  =  0 )
4443oveq2d 6286 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( x  x.  ( vol `  ( `' F " { x } ) ) )  =  ( x  x.  0 ) )
45 eldifi 3612 . . . . . . 7  |-  ( x  e.  ( A  \ 
( ran  F  \  {
0 } ) )  ->  x  e.  A
)
4645, 8sylan2 472 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  x  e.  RR )
4746recnd 9611 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  x  e.  CC )
4847mul01d 9768 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( x  x.  0 )  =  0 )
4944, 48eqtrd 2495 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  ( A  e. 
Fin  /\  ( ran  F 
\  { 0 } )  C_  A  /\  A  C_  ( RR  \  { 0 } ) ) )  /\  x  e.  ( A  \  ( ran  F  \  { 0 } ) ) )  ->  ( x  x.  ( vol `  ( `' F " { x } ) ) )  =  0 )
50 simpr1 1000 . . 3  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  A  e.  Fin )
513, 14, 49, 50fsumss 13629 . 2  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  sum_ x  e.  ( ran  F  \  { 0 } ) ( x  x.  ( vol `  ( `' F " { x } ) ) )  =  sum_ x  e.  A  ( x  x.  ( vol `  ( `' F " { x } ) ) ) )
522, 51eqtrd 2495 1  |-  ( ( F  e.  dom  S.1  /\  ( A  e.  Fin  /\  ( ran  F  \  { 0 } ) 
C_  A  /\  A  C_  ( RR  \  {
0 } ) ) )  ->  ( S.1 `  F )  =  sum_ x  e.  A  ( x  x.  ( vol `  ( `' F " { x } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3783   {csn 4016   `'ccnv 4987   dom cdm 4988   ran crn 4989   "cima 4991    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   Fincfn 7509   CCcc 9479   RRcr 9480   0cc0 9481    x. cmul 9486   sum_csu 13590   vol*covol 22040   volcvol 22041   S.1citg1 22190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xadd 11322  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-xmet 18607  df-met 18608  df-ovol 22042  df-vol 22043  df-mbf 22194  df-itg1 22195
This theorem is referenced by:  itg1addlem4  22272  itg1climres  22287
  Copyright terms: Public domain W3C validator