MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem5 Structured version   Unicode version

Theorem itg1addlem5 21858
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg1add.3  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
itg1add.4  |-  P  =  (  +  |`  ( ran  F  X.  ran  G
) )
Assertion
Ref Expression
itg1addlem5  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  ( ( S.1 `  F
)  +  ( S.1 `  G ) ) )
Distinct variable groups:    i, j, F    i, G, j    ph, i,
j
Allowed substitution hints:    P( i, j)    I( i, j)

Proof of Theorem itg1addlem5
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . 4  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1frn 21835 . . . 4  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
31, 2syl 16 . . 3  |-  ( ph  ->  ran  F  e.  Fin )
4 i1fadd.2 . . . . . 6  |-  ( ph  ->  G  e.  dom  S.1 )
5 i1frn 21835 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ran 
G  e.  Fin )
64, 5syl 16 . . . . 5  |-  ( ph  ->  ran  G  e.  Fin )
76adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  ran  F )  ->  ran  G  e.  Fin )
8 i1ff 21834 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
91, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  F : RR --> RR )
10 frn 5736 . . . . . . . . 9  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
119, 10syl 16 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  RR )
1211sselda 3504 . . . . . . 7  |-  ( (
ph  /\  y  e.  ran  F )  ->  y  e.  RR )
1312adantr 465 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  y  e.  RR )
1413recnd 9621 . . . . 5  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  y  e.  CC )
15 itg1add.3 . . . . . . . . 9  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
161, 4, 15itg1addlem2 21855 . . . . . . . 8  |-  ( ph  ->  I : ( RR 
X.  RR ) --> RR )
1716ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  I : ( RR  X.  RR ) --> RR )
18 i1ff 21834 . . . . . . . . . . 11  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
194, 18syl 16 . . . . . . . . . 10  |-  ( ph  ->  G : RR --> RR )
20 frn 5736 . . . . . . . . . 10  |-  ( G : RR --> RR  ->  ran 
G  C_  RR )
2119, 20syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  G  C_  RR )
2221sselda 3504 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ran  G )  ->  z  e.  RR )
2322adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  z  e.  RR )
2417, 13, 23fovrnd 6430 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  ( y I z )  e.  RR )
2524recnd 9621 . . . . 5  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  ( y I z )  e.  CC )
2614, 25mulcld 9615 . . . 4  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  ( y  x.  ( y I z ) )  e.  CC )
277, 26fsumcl 13517 . . 3  |-  ( (
ph  /\  y  e.  ran  F )  ->  sum_ z  e.  ran  G ( y  x.  ( y I z ) )  e.  CC )
2823recnd 9621 . . . . 5  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  z  e.  CC )
2928, 25mulcld 9615 . . . 4  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  ( z  x.  ( y I z ) )  e.  CC )
307, 29fsumcl 13517 . . 3  |-  ( (
ph  /\  y  e.  ran  F )  ->  sum_ z  e.  ran  G ( z  x.  ( y I z ) )  e.  CC )
313, 27, 30fsumadd 13523 . 2  |-  ( ph  -> 
sum_ y  e.  ran  F ( sum_ z  e.  ran  G ( y  x.  (
y I z ) )  +  sum_ z  e.  ran  G ( z  x.  ( y I z ) ) )  =  ( sum_ y  e.  ran  F sum_ z  e.  ran  G ( y  x.  ( y I z ) )  + 
sum_ y  e.  ran  F
sum_ z  e.  ran  G ( z  x.  (
y I z ) ) ) )
32 itg1add.4 . . . 4  |-  P  =  (  +  |`  ( ran  F  X.  ran  G
) )
331, 4, 15, 32itg1addlem4 21857 . . 3  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) ) )
3414, 28, 25adddird 9620 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ran  F )  /\  z  e.  ran  G )  ->  ( ( y  +  z )  x.  ( y I z ) )  =  ( ( y  x.  (
y I z ) )  +  ( z  x.  ( y I z ) ) ) )
3534sumeq2dv 13487 . . . . 5  |-  ( (
ph  /\  y  e.  ran  F )  ->  sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) )  = 
sum_ z  e.  ran  G ( ( y  x.  ( y I z ) )  +  ( z  x.  ( y I z ) ) ) )
367, 26, 29fsumadd 13523 . . . . 5  |-  ( (
ph  /\  y  e.  ran  F )  ->  sum_ z  e.  ran  G ( ( y  x.  ( y I z ) )  +  ( z  x.  ( y I z ) ) )  =  ( sum_ z  e.  ran  G ( y  x.  (
y I z ) )  +  sum_ z  e.  ran  G ( z  x.  ( y I z ) ) ) )
3735, 36eqtrd 2508 . . . 4  |-  ( (
ph  /\  y  e.  ran  F )  ->  sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) )  =  ( sum_ z  e.  ran  G ( y  x.  (
y I z ) )  +  sum_ z  e.  ran  G ( z  x.  ( y I z ) ) ) )
3837sumeq2dv 13487 . . 3  |-  ( ph  -> 
sum_ y  e.  ran  F
sum_ z  e.  ran  G ( ( y  +  z )  x.  (
y I z ) )  =  sum_ y  e.  ran  F ( sum_ z  e.  ran  G ( y  x.  ( y I z ) )  +  sum_ z  e.  ran  G ( z  x.  (
y I z ) ) ) )
3933, 38eqtrd 2508 . 2  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ y  e.  ran  F (
sum_ z  e.  ran  G ( y  x.  (
y I z ) )  +  sum_ z  e.  ran  G ( z  x.  ( y I z ) ) ) )
40 itg1val 21841 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ y  e.  ( ran  F  \  {
0 } ) ( y  x.  ( vol `  ( `' F " { y } ) ) ) )
411, 40syl 16 . . . 4  |-  ( ph  ->  ( S.1 `  F
)  =  sum_ y  e.  ( ran  F  \  { 0 } ) ( y  x.  ( vol `  ( `' F " { y } ) ) ) )
4219adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  G : RR --> RR )
436adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ran  G  e.  Fin )
44 inss2 3719 . . . . . . . . . 10  |-  ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )
4544a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } ) )
46 i1fima 21836 . . . . . . . . . . . 12  |-  ( F  e.  dom  S.1  ->  ( `' F " { y } )  e.  dom  vol )
471, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F " { y } )  e.  dom  vol )
4847ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( `' F " { y } )  e.  dom  vol )
49 i1fima 21836 . . . . . . . . . . . 12  |-  ( G  e.  dom  S.1  ->  ( `' G " { z } )  e.  dom  vol )
504, 49syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( `' G " { z } )  e.  dom  vol )
5150ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( `' G " { z } )  e.  dom  vol )
52 inmbl 21703 . . . . . . . . . 10  |-  ( ( ( `' F " { y } )  e.  dom  vol  /\  ( `' G " { z } )  e.  dom  vol )  ->  ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )
5348, 51, 52syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( `' F " { y } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
5411ssdifssd 3642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  F  \  { 0 } ) 
C_  RR )
5554sselda 3504 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  y  e.  RR )
5655adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
y  e.  RR )
5721adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ran  G  C_  RR )
5857sselda 3504 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
z  e.  RR )
59 eldifsni 4153 . . . . . . . . . . . . 13  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  y  =/=  0
)
6059ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
y  =/=  0 )
61 simpl 457 . . . . . . . . . . . . 13  |-  ( ( y  =  0  /\  z  =  0 )  ->  y  =  0 )
6261necon3ai 2695 . . . . . . . . . . . 12  |-  ( y  =/=  0  ->  -.  ( y  =  0  /\  z  =  0 ) )
6360, 62syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  -.  ( y  =  0  /\  z  =  0 ) )
641, 4, 15itg1addlem3 21856 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR  /\  z  e.  RR )  /\  -.  ( y  =  0  /\  z  =  0 ) )  ->  ( y I z )  =  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
6556, 58, 63, 64syl21anc 1227 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( y I z )  =  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
6616ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  I : ( RR  X.  RR ) --> RR )
6766, 56, 58fovrnd 6430 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( y I z )  e.  RR )
6865, 67eqeltrrd 2556 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( vol `  (
( `' F " { y } )  i^i  ( `' G " { z } ) ) )  e.  RR )
6942, 43, 45, 53, 68itg1addlem1 21850 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  U_ z  e.  ran  G ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )  =  sum_ z  e.  ran  G ( vol `  (
( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
70 iunin2 4389 . . . . . . . . . 10  |-  U_ z  e.  ran  G ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  =  ( ( `' F " { y } )  i^i  U_ z  e.  ran  G ( `' G " { z } ) )
711adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  F  e.  dom  S.1 )
7271, 46syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
73 mblss 21693 . . . . . . . . . . . . 13  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( `' F " { y } ) 
C_  RR )
7472, 73syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } ) 
C_  RR )
75 iunid 4380 . . . . . . . . . . . . . . 15  |-  U_ z  e.  ran  G { z }  =  ran  G
7675imaeq2i 5334 . . . . . . . . . . . . . 14  |-  ( `' G " U_ z  e.  ran  G { z } )  =  ( `' G " ran  G
)
77 imaiun 6144 . . . . . . . . . . . . . 14  |-  ( `' G " U_ z  e.  ran  G { z } )  =  U_ z  e.  ran  G ( `' G " { z } )
78 cnvimarndm 5357 . . . . . . . . . . . . . 14  |-  ( `' G " ran  G
)  =  dom  G
7976, 77, 783eqtr3i 2504 . . . . . . . . . . . . 13  |-  U_ z  e.  ran  G ( `' G " { z } )  =  dom  G
80 fdm 5734 . . . . . . . . . . . . . 14  |-  ( G : RR --> RR  ->  dom 
G  =  RR )
8142, 80syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  dom  G  =  RR )
8279, 81syl5eq 2520 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  U_ z  e.  ran  G ( `' G " { z } )  =  RR )
8374, 82sseqtr4d 3541 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } ) 
C_  U_ z  e.  ran  G ( `' G " { z } ) )
84 df-ss 3490 . . . . . . . . . . 11  |-  ( ( `' F " { y } )  C_  U_ z  e.  ran  G ( `' G " { z } )  <->  ( ( `' F " { y } )  i^i  U_ z  e.  ran  G ( `' G " { z } ) )  =  ( `' F " { y } ) )
8583, 84sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( ( `' F " { y } )  i^i  U_ z  e.  ran  G ( `' G " { z } ) )  =  ( `' F " { y } ) )
8670, 85syl5req 2521 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  =  U_ z  e. 
ran  G ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )
8786fveq2d 5869 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol `  U_ z  e.  ran  G ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
8865sumeq2dv 13487 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  sum_ z  e.  ran  G ( y I z )  =  sum_ z  e.  ran  G ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
8969, 87, 883eqtr4d 2518 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  = 
sum_ z  e.  ran  G ( y I z ) )
9089oveq2d 6299 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( y  x.  ( vol `  ( `' F " { y } ) ) )  =  ( y  x. 
sum_ z  e.  ran  G ( y I z ) ) )
9155recnd 9621 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  y  e.  CC )
9267recnd 9621 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( y I z )  e.  CC )
9343, 91, 92fsummulc2 13561 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( y  x. 
sum_ z  e.  ran  G ( y I z ) )  =  sum_ z  e.  ran  G ( y  x.  ( y I z ) ) )
9490, 93eqtrd 2508 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( y  x.  ( vol `  ( `' F " { y } ) ) )  =  sum_ z  e.  ran  G ( y  x.  (
y I z ) ) )
9594sumeq2dv 13487 . . . 4  |-  ( ph  -> 
sum_ y  e.  ( ran  F  \  {
0 } ) ( y  x.  ( vol `  ( `' F " { y } ) ) )  =  sum_ y  e.  ( ran  F 
\  { 0 } ) sum_ z  e.  ran  G ( y  x.  (
y I z ) ) )
96 difssd 3632 . . . . 5  |-  ( ph  ->  ( ran  F  \  { 0 } ) 
C_  ran  F )
9756recnd 9621 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
y  e.  CC )
9897, 92mulcld 9615 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  F  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( y  x.  (
y I z ) )  e.  CC )
9943, 98fsumcl 13517 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  sum_ z  e.  ran  G ( y  x.  (
y I z ) )  e.  CC )
100 dfin4 3738 . . . . . . . 8  |-  ( ran 
F  i^i  { 0 } )  =  ( ran  F  \  ( ran  F  \  { 0 } ) )
101 inss2 3719 . . . . . . . 8  |-  ( ran 
F  i^i  { 0 } )  C_  { 0 }
102100, 101eqsstr3i 3535 . . . . . . 7  |-  ( ran 
F  \  ( ran  F 
\  { 0 } ) )  C_  { 0 }
103102sseli 3500 . . . . . 6  |-  ( y  e.  ( ran  F  \  ( ran  F  \  { 0 } ) )  ->  y  e.  { 0 } )
104 elsni 4052 . . . . . . . . . . 11  |-  ( y  e.  { 0 }  ->  y  =  0 )
105104ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  y  = 
0 )
106105oveq1d 6298 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  ( y  x.  ( y I z ) )  =  ( 0  x.  ( y I z ) ) )
10716ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  I :
( RR  X.  RR )
--> RR )
108 0re 9595 . . . . . . . . . . . . 13  |-  0  e.  RR
109105, 108syl6eqel 2563 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  y  e.  RR )
11022adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  z  e.  RR )
111107, 109, 110fovrnd 6430 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  ( y
I z )  e.  RR )
112111recnd 9621 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  ( y
I z )  e.  CC )
113112mul02d 9776 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  ( 0  x.  ( y I z ) )  =  0 )
114106, 113eqtrd 2508 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  { 0 } )  /\  z  e.  ran  G )  ->  ( y  x.  ( y I z ) )  =  0 )
115114sumeq2dv 13487 . . . . . . 7  |-  ( (
ph  /\  y  e.  { 0 } )  ->  sum_ z  e.  ran  G
( y  x.  (
y I z ) )  =  sum_ z  e.  ran  G 0 )
1166adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  { 0 } )  ->  ran  G  e.  Fin )
117116olcd 393 . . . . . . . 8  |-  ( (
ph  /\  y  e.  { 0 } )  -> 
( ran  G  C_  ( ZZ>=
`  0 )  \/ 
ran  G  e.  Fin ) )
118 sumz 13506 . . . . . . . 8  |-  ( ( ran  G  C_  ( ZZ>=
`  0 )  \/ 
ran  G  e.  Fin )  ->  sum_ z  e.  ran  G 0  =  0 )
119117, 118syl 16 . . . . . . 7  |-  ( (
ph  /\  y  e.  { 0 } )  ->  sum_ z  e.  ran  G
0  =  0 )
120115, 119eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  y  e.  { 0 } )  ->  sum_ z  e.  ran  G
( y  x.  (
y I z ) )  =  0 )
121103, 120sylan2 474 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  F  \  ( ran  F  \  { 0 } ) ) )  ->  sum_ z  e.  ran  G ( y  x.  (
y I z ) )  =  0 )
12296, 99, 121, 3fsumss 13509 . . . 4  |-  ( ph  -> 
sum_ y  e.  ( ran  F  \  {
0 } ) sum_ z  e.  ran  G ( y  x.  ( y I z ) )  =  sum_ y  e.  ran  F
sum_ z  e.  ran  G ( y  x.  (
y I z ) ) )
12341, 95, 1223eqtrd 2512 . . 3  |-  ( ph  ->  ( S.1 `  F
)  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( y  x.  ( y I z ) ) )
124 itg1val 21841 . . . . 5  |-  ( G  e.  dom  S.1  ->  ( S.1 `  G )  =  sum_ z  e.  ( ran  G  \  {
0 } ) ( z  x.  ( vol `  ( `' G " { z } ) ) ) )
1254, 124syl 16 . . . 4  |-  ( ph  ->  ( S.1 `  G
)  =  sum_ z  e.  ( ran  G  \  { 0 } ) ( z  x.  ( vol `  ( `' G " { z } ) ) ) )
1269adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  F : RR --> RR )
1273adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ran  F  e.  Fin )
128 inss1 3718 . . . . . . . . . 10  |-  ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  ( `' F " { y } )
129128a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  ( `' F " { y } ) )
13047ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( `' F " { y } )  e.  dom  vol )
13150ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( `' G " { z } )  e.  dom  vol )
132130, 131, 52syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( ( `' F " { y } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
13311adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ran  F  C_  RR )
134133sselda 3504 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
y  e.  RR )
13521ssdifssd 3642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  G  \  { 0 } ) 
C_  RR )
136135sselda 3504 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  z  e.  RR )
137136adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
z  e.  RR )
138 eldifsni 4153 . . . . . . . . . . . . 13  |-  ( z  e.  ( ran  G  \  { 0 } )  ->  z  =/=  0
)
139138ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
z  =/=  0 )
140 simpr 461 . . . . . . . . . . . . 13  |-  ( ( y  =  0  /\  z  =  0 )  ->  z  =  0 )
141140necon3ai 2695 . . . . . . . . . . . 12  |-  ( z  =/=  0  ->  -.  ( y  =  0  /\  z  =  0 ) )
142139, 141syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  ->  -.  ( y  =  0  /\  z  =  0 ) )
143134, 137, 142, 64syl21anc 1227 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( y I z )  =  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
14416ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  ->  I : ( RR  X.  RR ) --> RR )
145144, 134, 137fovrnd 6430 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( y I z )  e.  RR )
146143, 145eqeltrrd 2556 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( vol `  (
( `' F " { y } )  i^i  ( `' G " { z } ) ) )  e.  RR )
147126, 127, 129, 132, 146itg1addlem1 21850 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( vol `  U_ y  e.  ran  F ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )  =  sum_ y  e.  ran  F ( vol `  (
( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
148 incom 3691 . . . . . . . . . . . . 13  |-  ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  =  ( ( `' G " { z } )  i^i  ( `' F " { y } ) )
149148a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  ran  F  -> 
( ( `' F " { y } )  i^i  ( `' G " { z } ) )  =  ( ( `' G " { z } )  i^i  ( `' F " { y } ) ) )
150149iuneq2i 4344 . . . . . . . . . . 11  |-  U_ y  e.  ran  F ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  = 
U_ y  e.  ran  F ( ( `' G " { z } )  i^i  ( `' F " { y } ) )
151 iunin2 4389 . . . . . . . . . . 11  |-  U_ y  e.  ran  F ( ( `' G " { z } )  i^i  ( `' F " { y } ) )  =  ( ( `' G " { z } )  i^i  U_ y  e.  ran  F ( `' F " { y } ) )
152150, 151eqtri 2496 . . . . . . . . . 10  |-  U_ y  e.  ran  F ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  =  ( ( `' G " { z } )  i^i  U_ y  e.  ran  F ( `' F " { y } ) )
153 cnvimass 5356 . . . . . . . . . . . . 13  |-  ( `' G " { z } )  C_  dom  G
15419, 80syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  G  =  RR )
155154adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  dom  G  =  RR )
156153, 155syl5sseq 3552 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( `' G " { z } ) 
C_  RR )
157 iunid 4380 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ran  F { y }  =  ran  F
158157imaeq2i 5334 . . . . . . . . . . . . . 14  |-  ( `' F " U_ y  e.  ran  F { y } )  =  ( `' F " ran  F
)
159 imaiun 6144 . . . . . . . . . . . . . 14  |-  ( `' F " U_ y  e.  ran  F { y } )  =  U_ y  e.  ran  F ( `' F " { y } )
160 cnvimarndm 5357 . . . . . . . . . . . . . 14  |-  ( `' F " ran  F
)  =  dom  F
161158, 159, 1603eqtr3i 2504 . . . . . . . . . . . . 13  |-  U_ y  e.  ran  F ( `' F " { y } )  =  dom  F
162 fdm 5734 . . . . . . . . . . . . . . 15  |-  ( F : RR --> RR  ->  dom 
F  =  RR )
1639, 162syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  F  =  RR )
164163adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  dom  F  =  RR )
165161, 164syl5eq 2520 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  U_ y  e.  ran  F ( `' F " { y } )  =  RR )
166156, 165sseqtr4d 3541 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( `' G " { z } ) 
C_  U_ y  e.  ran  F ( `' F " { y } ) )
167 df-ss 3490 . . . . . . . . . . 11  |-  ( ( `' G " { z } )  C_  U_ y  e.  ran  F ( `' F " { y } )  <->  ( ( `' G " { z } )  i^i  U_ y  e.  ran  F ( `' F " { y } ) )  =  ( `' G " { z } ) )
168166, 167sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( ( `' G " { z } )  i^i  U_ y  e.  ran  F ( `' F " { y } ) )  =  ( `' G " { z } ) )
169152, 168syl5req 2521 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( `' G " { z } )  =  U_ y  e. 
ran  F ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )
170169fveq2d 5869 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( vol `  ( `' G " { z } ) )  =  ( vol `  U_ y  e.  ran  F ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
171143sumeq2dv 13487 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  sum_ y  e.  ran  F ( y I z )  =  sum_ y  e.  ran  F ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
172147, 170, 1713eqtr4d 2518 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( vol `  ( `' G " { z } ) )  = 
sum_ y  e.  ran  F ( y I z ) )
173172oveq2d 6299 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( z  x.  ( vol `  ( `' G " { z } ) ) )  =  ( z  x. 
sum_ y  e.  ran  F ( y I z ) ) )
174136recnd 9621 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  z  e.  CC )
175145recnd 9621 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( y I z )  e.  CC )
176127, 174, 175fsummulc2 13561 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( z  x. 
sum_ y  e.  ran  F ( y I z ) )  =  sum_ y  e.  ran  F ( z  x.  ( y I z ) ) )
177173, 176eqtrd 2508 . . . . 5  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  ( z  x.  ( vol `  ( `' G " { z } ) ) )  =  sum_ y  e.  ran  F ( z  x.  (
y I z ) ) )
178177sumeq2dv 13487 . . . 4  |-  ( ph  -> 
sum_ z  e.  ( ran  G  \  {
0 } ) ( z  x.  ( vol `  ( `' G " { z } ) ) )  =  sum_ z  e.  ( ran  G 
\  { 0 } ) sum_ y  e.  ran  F ( z  x.  (
y I z ) ) )
179 difssd 3632 . . . . . 6  |-  ( ph  ->  ( ran  G  \  { 0 } ) 
C_  ran  G )
180174adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
z  e.  CC )
181180, 175mulcld 9615 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ran  G  \  { 0 } ) )  /\  y  e. 
ran  F )  -> 
( z  x.  (
y I z ) )  e.  CC )
182127, 181fsumcl 13517 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  G  \  {
0 } ) )  ->  sum_ y  e.  ran  F ( z  x.  (
y I z ) )  e.  CC )
183 dfin4 3738 . . . . . . . . 9  |-  ( ran 
G  i^i  { 0 } )  =  ( ran  G  \  ( ran  G  \  { 0 } ) )
184 inss2 3719 . . . . . . . . 9  |-  ( ran 
G  i^i  { 0 } )  C_  { 0 }
185183, 184eqsstr3i 3535 . . . . . . . 8  |-  ( ran 
G  \  ( ran  G 
\  { 0 } ) )  C_  { 0 }
186185sseli 3500 . . . . . . 7  |-  ( z  e.  ( ran  G  \  ( ran  G  \  { 0 } ) )  ->  z  e.  { 0 } )
187 elsni 4052 . . . . . . . . . . . 12  |-  ( z  e.  { 0 }  ->  z  =  0 )
188187ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  z  = 
0 )
189188oveq1d 6298 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  ( z  x.  ( y I z ) )  =  ( 0  x.  ( y I z ) ) )
19016ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  I :
( RR  X.  RR )
--> RR )
19112adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  y  e.  RR )
192188, 108syl6eqel 2563 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  z  e.  RR )
193190, 191, 192fovrnd 6430 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  ( y
I z )  e.  RR )
194193recnd 9621 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  ( y
I z )  e.  CC )
195194mul02d 9776 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  ( 0  x.  ( y I z ) )  =  0 )
196189, 195eqtrd 2508 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  { 0 } )  /\  y  e.  ran  F )  ->  ( z  x.  ( y I z ) )  =  0 )
197196sumeq2dv 13487 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { 0 } )  ->  sum_ y  e.  ran  F
( z  x.  (
y I z ) )  =  sum_ y  e.  ran  F 0 )
1983adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { 0 } )  ->  ran  F  e.  Fin )
199198olcd 393 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { 0 } )  -> 
( ran  F  C_  ( ZZ>=
`  0 )  \/ 
ran  F  e.  Fin ) )
200 sumz 13506 . . . . . . . . 9  |-  ( ( ran  F  C_  ( ZZ>=
`  0 )  \/ 
ran  F  e.  Fin )  ->  sum_ y  e.  ran  F 0  =  0 )
201199, 200syl 16 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { 0 } )  ->  sum_ y  e.  ran  F
0  =  0 )
202197, 201eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  z  e.  { 0 } )  ->  sum_ y  e.  ran  F
( z  x.  (
y I z ) )  =  0 )
203186, 202sylan2 474 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ran  G  \  ( ran  G  \  { 0 } ) ) )  ->  sum_ y  e.  ran  F ( z  x.  (
y I z ) )  =  0 )
204179, 182, 203, 6fsumss 13509 . . . . 5  |-  ( ph  -> 
sum_ z  e.  ( ran  G  \  {
0 } ) sum_ y  e.  ran  F ( z  x.  ( y I z ) )  =  sum_ z  e.  ran  G
sum_ y  e.  ran  F ( z  x.  (
y I z ) ) )
20522adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  z  e.  RR )
206205recnd 9621 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  z  e.  CC )
20716ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  I : ( RR  X.  RR ) --> RR )
20811adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  F 
C_  RR )
209208sselda 3504 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  y  e.  RR )
210207, 209, 205fovrnd 6430 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( y I z )  e.  RR )
211210recnd 9621 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( y I z )  e.  CC )
212206, 211mulcld 9615 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( z  x.  ( y I z ) )  e.  CC )
213212anasss 647 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ran  G  /\  y  e.  ran  F ) )  ->  ( z  x.  ( y I z ) )  e.  CC )
2146, 3, 213fsumcom 13552 . . . . 5  |-  ( ph  -> 
sum_ z  e.  ran  G
sum_ y  e.  ran  F ( z  x.  (
y I z ) )  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( z  x.  ( y I z ) ) )
215204, 214eqtrd 2508 . . . 4  |-  ( ph  -> 
sum_ z  e.  ( ran  G  \  {
0 } ) sum_ y  e.  ran  F ( z  x.  ( y I z ) )  =  sum_ y  e.  ran  F
sum_ z  e.  ran  G ( z  x.  (
y I z ) ) )
216125, 178, 2153eqtrd 2512 . . 3  |-  ( ph  ->  ( S.1 `  G
)  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( z  x.  ( y I z ) ) )
217123, 216oveq12d 6301 . 2  |-  ( ph  ->  ( ( S.1 `  F
)  +  ( S.1 `  G ) )  =  ( sum_ y  e.  ran  F
sum_ z  e.  ran  G ( y  x.  (
y I z ) )  +  sum_ y  e.  ran  F sum_ z  e.  ran  G ( z  x.  ( y I z ) ) ) )
21831, 39, 2173eqtr4d 2518 1  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  ( ( S.1 `  F
)  +  ( S.1 `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3473    i^i cin 3475    C_ wss 3476   ifcif 3939   {csn 4027   U_ciun 4325    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   -->wf 5583   ` cfv 5587  (class class class)co 6283    |-> cmpt2 6285    oFcof 6521   Fincfn 7516   CCcc 9489   RRcr 9490   0cc0 9491    + caddc 9494    x. cmul 9496   ZZ>=cuz 11081   sum_csu 13470   volcvol 21626   S.1citg1 21775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-xadd 11318  df-ioo 11532  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-sum 13471  df-xmet 18199  df-met 18200  df-ovol 21627  df-vol 21628  df-mbf 21779  df-itg1 21780
This theorem is referenced by:  itg1add  21859
  Copyright terms: Public domain W3C validator