MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem4 Structured version   Unicode version

Theorem itg1addlem4 21976
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg1add.3  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
itg1add.4  |-  P  =  (  +  |`  ( ran  F  X.  ran  G
) )
Assertion
Ref Expression
itg1addlem4  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) ) )
Distinct variable groups:    i, j,
y, z    y, I    y, P, z    i, F, j, y, z    i, G, j, y, z    ph, i,
j, y, z
Allowed substitution hints:    P( i, j)    I( z, i, j)

Proof of Theorem itg1addlem4
Dummy variables  w  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . 5  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1fadd.2 . . . . 5  |-  ( ph  ->  G  e.  dom  S.1 )
31, 2i1fadd 21972 . . . 4  |-  ( ph  ->  ( F  oF  +  G )  e. 
dom  S.1 )
4 i1frn 21954 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
51, 4syl 16 . . . . . . 7  |-  ( ph  ->  ran  F  e.  Fin )
6 i1frn 21954 . . . . . . . 8  |-  ( G  e.  dom  S.1  ->  ran 
G  e.  Fin )
72, 6syl 16 . . . . . . 7  |-  ( ph  ->  ran  G  e.  Fin )
8 xpfi 7790 . . . . . . 7  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  e.  Fin )  ->  ( ran  F  X.  ran  G )  e. 
Fin )
95, 7, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ran  F  X.  ran  G )  e.  Fin )
10 ax-addf 9571 . . . . . . . . . 10  |-  +  :
( CC  X.  CC )
--> CC
11 ffn 5718 . . . . . . . . . 10  |-  (  +  : ( CC  X.  CC ) --> CC  ->  +  Fn  ( CC  X.  CC ) )
1210, 11ax-mp 5 . . . . . . . . 9  |-  +  Fn  ( CC  X.  CC )
13 i1ff 21953 . . . . . . . . . . . . 13  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
141, 13syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  F : RR --> RR )
15 frn 5724 . . . . . . . . . . . 12  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  C_  RR )
17 ax-resscn 9549 . . . . . . . . . . 11  |-  RR  C_  CC
1816, 17syl6ss 3499 . . . . . . . . . 10  |-  ( ph  ->  ran  F  C_  CC )
19 i1ff 21953 . . . . . . . . . . . . 13  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
202, 19syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G : RR --> RR )
21 frn 5724 . . . . . . . . . . . 12  |-  ( G : RR --> RR  ->  ran 
G  C_  RR )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ran  G  C_  RR )
2322, 17syl6ss 3499 . . . . . . . . . 10  |-  ( ph  ->  ran  G  C_  CC )
24 xpss12 5095 . . . . . . . . . 10  |-  ( ( ran  F  C_  CC  /\ 
ran  G  C_  CC )  ->  ( ran  F  X.  ran  G )  C_  ( CC  X.  CC ) )
2518, 23, 24syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ran  F  X.  ran  G )  C_  ( CC  X.  CC ) )
26 fnssres 5681 . . . . . . . . 9  |-  ( (  +  Fn  ( CC 
X.  CC )  /\  ( ran  F  X.  ran  G )  C_  ( CC  X.  CC ) )  -> 
(  +  |`  ( ran  F  X.  ran  G
) )  Fn  ( ran  F  X.  ran  G
) )
2712, 25, 26sylancr 663 . . . . . . . 8  |-  ( ph  ->  (  +  |`  ( ran  F  X.  ran  G
) )  Fn  ( ran  F  X.  ran  G
) )
28 itg1add.4 . . . . . . . . 9  |-  P  =  (  +  |`  ( ran  F  X.  ran  G
) )
2928fneq1i 5662 . . . . . . . 8  |-  ( P  Fn  ( ran  F  X.  ran  G )  <->  (  +  |`  ( ran  F  X.  ran  G ) )  Fn  ( ran  F  X.  ran  G ) )
3027, 29sylibr 212 . . . . . . 7  |-  ( ph  ->  P  Fn  ( ran 
F  X.  ran  G
) )
31 dffn4 5788 . . . . . . 7  |-  ( P  Fn  ( ran  F  X.  ran  G )  <->  P :
( ran  F  X.  ran  G ) -onto-> ran  P
)
3230, 31sylib 196 . . . . . 6  |-  ( ph  ->  P : ( ran 
F  X.  ran  G
) -onto-> ran  P )
33 fofi 7805 . . . . . 6  |-  ( ( ( ran  F  X.  ran  G )  e.  Fin  /\  P : ( ran 
F  X.  ran  G
) -onto-> ran  P )  ->  ran  P  e.  Fin )
349, 32, 33syl2anc 661 . . . . 5  |-  ( ph  ->  ran  P  e.  Fin )
35 difss 3614 . . . . 5  |-  ( ran 
P  \  { 0 } )  C_  ran  P
36 ssfi 7739 . . . . 5  |-  ( ( ran  P  e.  Fin  /\  ( ran  P  \  { 0 } ) 
C_  ran  P )  ->  ( ran  P  \  { 0 } )  e.  Fin )
3734, 35, 36sylancl 662 . . . 4  |-  ( ph  ->  ( ran  P  \  { 0 } )  e.  Fin )
38 opelxpi 5018 . . . . . . . . . 10  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G )  ->  <. x ,  y >.  e.  ( ran  F  X.  ran  G
) )
39 ffun 5720 . . . . . . . . . . . 12  |-  (  +  : ( CC  X.  CC ) --> CC  ->  Fun  +  )
4010, 39ax-mp 5 . . . . . . . . . . 11  |-  Fun  +
4110fdmi 5723 . . . . . . . . . . . 12  |-  dom  +  =  ( CC  X.  CC )
4225, 41syl6sseqr 3534 . . . . . . . . . . 11  |-  ( ph  ->  ( ran  F  X.  ran  G )  C_  dom  +  )
43 funfvima2 6130 . . . . . . . . . . 11  |-  ( ( Fun  +  /\  ( ran  F  X.  ran  G
)  C_  dom  +  )  ->  ( <. x ,  y >.  e.  ( ran  F  X.  ran  G )  ->  (  +  ` 
<. x ,  y >.
)  e.  (  + 
" ( ran  F  X.  ran  G ) ) ) )
4440, 42, 43sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( ran  F  X.  ran  G )  -> 
(  +  `  <. x ,  y >. )  e.  (  +  " ( ran  F  X.  ran  G
) ) ) )
4538, 44syl5 32 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
ran  F  /\  y  e.  ran  G )  -> 
(  +  `  <. x ,  y >. )  e.  (  +  " ( ran  F  X.  ran  G
) ) ) )
4645imp 429 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ran  F  /\  y  e.  ran  G ) )  ->  (  +  `  <. x ,  y >.
)  e.  (  + 
" ( ran  F  X.  ran  G ) ) )
47 df-ov 6281 . . . . . . . 8  |-  ( x  +  y )  =  (  +  `  <. x ,  y >. )
4828rneqi 5216 . . . . . . . . 9  |-  ran  P  =  ran  (  +  |`  ( ran  F  X.  ran  G
) )
49 df-ima 4999 . . . . . . . . 9  |-  (  + 
" ( ran  F  X.  ran  G ) )  =  ran  (  +  |`  ( ran  F  X.  ran  G ) )
5048, 49eqtr4i 2473 . . . . . . . 8  |-  ran  P  =  (  +  " ( ran  F  X.  ran  G
) )
5146, 47, 503eltr4g 2547 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ran  F  /\  y  e.  ran  G ) )  ->  ( x  +  y )  e.  ran  P )
52 ffn 5718 . . . . . . . . 9  |-  ( F : RR --> RR  ->  F  Fn  RR )
5314, 52syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  RR )
54 dffn3 5725 . . . . . . . 8  |-  ( F  Fn  RR  <->  F : RR
--> ran  F )
5553, 54sylib 196 . . . . . . 7  |-  ( ph  ->  F : RR --> ran  F
)
56 ffn 5718 . . . . . . . . 9  |-  ( G : RR --> RR  ->  G  Fn  RR )
5720, 56syl 16 . . . . . . . 8  |-  ( ph  ->  G  Fn  RR )
58 dffn3 5725 . . . . . . . 8  |-  ( G  Fn  RR  <->  G : RR
--> ran  G )
5957, 58sylib 196 . . . . . . 7  |-  ( ph  ->  G : RR --> ran  G
)
60 reex 9583 . . . . . . . 8  |-  RR  e.  _V
6160a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
62 inidm 3690 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
6351, 55, 59, 61, 61, 62off 6536 . . . . . 6  |-  ( ph  ->  ( F  oF  +  G ) : RR --> ran  P )
64 frn 5724 . . . . . 6  |-  ( ( F  oF  +  G ) : RR --> ran  P  ->  ran  ( F  oF  +  G
)  C_  ran  P )
6563, 64syl 16 . . . . 5  |-  ( ph  ->  ran  ( F  oF  +  G )  C_ 
ran  P )
6665ssdifd 3623 . . . 4  |-  ( ph  ->  ( ran  ( F  oF  +  G
)  \  { 0 } )  C_  ( ran  P  \  { 0 } ) )
6716sselda 3487 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ran  F )  ->  y  e.  RR )
6822sselda 3487 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ran  G )  ->  z  e.  RR )
6967, 68anim12dan 835 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ran  F  /\  z  e.  ran  G ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
70 readdcl 9575 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  +  z )  e.  RR )
7169, 70syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ran  F  /\  z  e.  ran  G ) )  ->  ( y  +  z )  e.  RR )
7271ralrimivva 2862 . . . . . . 7  |-  ( ph  ->  A. y  e.  ran  F A. z  e.  ran  G ( y  +  z )  e.  RR )
73 funimassov 6434 . . . . . . . 8  |-  ( ( Fun  +  /\  ( ran  F  X.  ran  G
)  C_  dom  +  )  ->  ( (  + 
" ( ran  F  X.  ran  G ) ) 
C_  RR  <->  A. y  e.  ran  F A. z  e.  ran  G ( y  +  z )  e.  RR ) )
7440, 42, 73sylancr 663 . . . . . . 7  |-  ( ph  ->  ( (  +  "
( ran  F  X.  ran  G ) )  C_  RR 
<-> 
A. y  e.  ran  F A. z  e.  ran  G ( y  +  z )  e.  RR ) )
7572, 74mpbird 232 . . . . . 6  |-  ( ph  ->  (  +  " ( ran  F  X.  ran  G
) )  C_  RR )
7650, 75syl5eqss 3531 . . . . 5  |-  ( ph  ->  ran  P  C_  RR )
7776ssdifd 3623 . . . 4  |-  ( ph  ->  ( ran  P  \  { 0 } ) 
C_  ( RR  \  { 0 } ) )
78 itg1val2 21961 . . . 4  |-  ( ( ( F  oF  +  G )  e. 
dom  S.1  /\  ( ( ran  P  \  {
0 } )  e. 
Fin  /\  ( ran  ( F  oF  +  G )  \  {
0 } )  C_  ( ran  P  \  {
0 } )  /\  ( ran  P  \  {
0 } )  C_  ( RR  \  { 0 } ) ) )  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  ( vol `  ( `' ( F  oF  +  G ) " {
w } ) ) ) )
793, 37, 66, 77, 78syl13anc 1229 . . 3  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  ( vol `  ( `' ( F  oF  +  G ) " {
w } ) ) ) )
8020adantr 465 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  G : RR --> RR )
817adantr 465 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ran  G  e.  Fin )
82 inss2 3702 . . . . . . . . 9  |-  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )
8382a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } ) )
84 i1fima 21955 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( `' F " { ( w  -  z ) } )  e.  dom  vol )
851, 84syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' F " { ( w  -  z ) } )  e.  dom  vol )
86 i1fima 21955 . . . . . . . . . . 11  |-  ( G  e.  dom  S.1  ->  ( `' G " { z } )  e.  dom  vol )
872, 86syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' G " { z } )  e.  dom  vol )
88 inmbl 21822 . . . . . . . . . 10  |-  ( ( ( `' F " { ( w  -  z ) } )  e.  dom  vol  /\  ( `' G " { z } )  e.  dom  vol )  ->  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )
8985, 87, 88syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
9089ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
9135, 76syl5ss 3498 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  P  \  { 0 } ) 
C_  RR )
9291sselda 3487 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  w  e.  RR )
9392adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  w  e.  RR )
9468adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
z  e.  RR )
9593, 94resubcld 9990 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( w  -  z
)  e.  RR )
9693recnd 9622 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  w  e.  CC )
9794recnd 9622 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
z  e.  CC )
9896, 97npcand 9937 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( w  -  z )  +  z )  =  w )
99 eldifsni 4138 . . . . . . . . . . . . 13  |-  ( w  e.  ( ran  P  \  { 0 } )  ->  w  =/=  0
)
10099ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  w  =/=  0 )
10198, 100eqnetrd 2734 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( w  -  z )  +  z )  =/=  0 )
102 oveq12 6287 . . . . . . . . . . . . 13  |-  ( ( ( w  -  z
)  =  0  /\  z  =  0 )  ->  ( ( w  -  z )  +  z )  =  ( 0  +  0 ) )
103 00id 9755 . . . . . . . . . . . . 13  |-  ( 0  +  0 )  =  0
104102, 103syl6eq 2498 . . . . . . . . . . . 12  |-  ( ( ( w  -  z
)  =  0  /\  z  =  0 )  ->  ( ( w  -  z )  +  z )  =  0 )
105104necon3ai 2669 . . . . . . . . . . 11  |-  ( ( ( w  -  z
)  +  z )  =/=  0  ->  -.  ( ( w  -  z )  =  0  /\  z  =  0 ) )
106101, 105syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  -.  ( ( w  -  z )  =  0  /\  z  =  0 ) )
107 itg1add.3 . . . . . . . . . . 11  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
1081, 2, 107itg1addlem3 21975 . . . . . . . . . 10  |-  ( ( ( ( w  -  z )  e.  RR  /\  z  e.  RR )  /\  -.  ( ( w  -  z )  =  0  /\  z  =  0 ) )  ->  ( ( w  -  z ) I z )  =  ( vol `  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) ) )
10995, 94, 106, 108syl21anc 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( w  -  z ) I z )  =  ( vol `  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) ) )
1101, 2, 107itg1addlem2 21974 . . . . . . . . . . 11  |-  ( ph  ->  I : ( RR 
X.  RR ) --> RR )
111110ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  ->  I : ( RR  X.  RR ) --> RR )
112111, 95, 94fovrnd 6429 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( w  -  z ) I z )  e.  RR )
113109, 112eqeltrrd 2530 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( vol `  (
( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
11480, 81, 83, 90, 113itg1addlem1 21969 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( vol `  U_ z  e.  ran  G ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) )  =  sum_ z  e.  ran  G ( vol `  (
( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) ) )
11592recnd 9622 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  w  e.  CC )
1161, 2i1faddlem 21970 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  CC )  ->  ( `' ( F  oF  +  G ) " { w } )  =  U_ z  e. 
ran  G ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) )
117115, 116syldan 470 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( `' ( F  oF  +  G ) " {
w } )  = 
U_ z  e.  ran  G ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) )
118117fveq2d 5857 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( vol `  ( `' ( F  oF  +  G ) " { w } ) )  =  ( vol `  U_ z  e.  ran  G ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) ) )
119109sumeq2dv 13501 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  sum_ z  e.  ran  G ( ( w  -  z ) I z )  =  sum_ z  e.  ran  G ( vol `  ( ( `' F " { ( w  -  z ) } )  i^i  ( `' G " { z } ) ) ) )
120114, 118, 1193eqtr4d 2492 . . . . . 6  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( vol `  ( `' ( F  oF  +  G ) " { w } ) )  =  sum_ z  e.  ran  G ( ( w  -  z ) I z ) )
121120oveq2d 6294 . . . . 5  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( w  x.  ( vol `  ( `' ( F  oF  +  G ) " { w } ) ) )  =  ( w  x.  sum_ z  e.  ran  G ( ( w  -  z ) I z ) ) )
122112recnd 9622 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( ( w  -  z ) I z )  e.  CC )
12381, 115, 122fsummulc2 13575 . . . . 5  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( w  x. 
sum_ z  e.  ran  G ( ( w  -  z ) I z ) )  =  sum_ z  e.  ran  G ( w  x.  ( ( w  -  z ) I z ) ) )
124121, 123eqtrd 2482 . . . 4  |-  ( (
ph  /\  w  e.  ( ran  P  \  {
0 } ) )  ->  ( w  x.  ( vol `  ( `' ( F  oF  +  G ) " { w } ) ) )  =  sum_ z  e.  ran  G ( w  x.  ( ( w  -  z ) I z ) ) )
125124sumeq2dv 13501 . . 3  |-  ( ph  -> 
sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  ( vol `  ( `' ( F  oF  +  G ) " { w } ) ) )  =  sum_ w  e.  ( ran  P  \  { 0 } )
sum_ z  e.  ran  G ( w  x.  (
( w  -  z
) I z ) ) )
12696, 122mulcld 9616 . . . . 5  |-  ( ( ( ph  /\  w  e.  ( ran  P  \  { 0 } ) )  /\  z  e. 
ran  G )  -> 
( w  x.  (
( w  -  z
) I z ) )  e.  CC )
127126anasss 647 . . . 4  |-  ( (
ph  /\  ( w  e.  ( ran  P  \  { 0 } )  /\  z  e.  ran  G ) )  ->  (
w  x.  ( ( w  -  z ) I z ) )  e.  CC )
12837, 7, 127fsumcom 13566 . . 3  |-  ( ph  -> 
sum_ w  e.  ( ran  P  \  { 0 } ) sum_ z  e.  ran  G ( w  x.  ( ( w  -  z ) I z ) )  = 
sum_ z  e.  ran  G
sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  ( ( w  -  z ) I z ) ) )
12979, 125, 1283eqtrd 2486 . 2  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ z  e.  ran  G sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  (
( w  -  z
) I z ) ) )
130 oveq1 6285 . . . . . . 7  |-  ( y  =  ( w  -  z )  ->  (
y  +  z )  =  ( ( w  -  z )  +  z ) )
131 oveq1 6285 . . . . . . 7  |-  ( y  =  ( w  -  z )  ->  (
y I z )  =  ( ( w  -  z ) I z ) )
132130, 131oveq12d 6296 . . . . . 6  |-  ( y  =  ( w  -  z )  ->  (
( y  +  z )  x.  ( y I z ) )  =  ( ( ( w  -  z )  +  z )  x.  ( ( w  -  z ) I z ) ) )
13334adantr 465 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  P  e.  Fin )
13476adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  P 
C_  RR )
135134sselda 3487 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  v  e.  ran  P )  ->  v  e.  RR )
13668adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  v  e.  ran  P )  ->  z  e.  RR )
137135, 136resubcld 9990 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  v  e.  ran  P )  ->  ( v  -  z )  e.  RR )
138137ex 434 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
v  e.  ran  P  ->  ( v  -  z
)  e.  RR ) )
139135recnd 9622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  v  e.  ran  P )  ->  v  e.  CC )
140139adantrr 716 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( v  e.  ran  P  /\  y  e.  ran  P ) )  ->  v  e.  CC )
14176sselda 3487 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ran  P )  ->  y  e.  RR )
142141ad2ant2rl 748 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( v  e.  ran  P  /\  y  e.  ran  P ) )  ->  y  e.  RR )
143142recnd 9622 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( v  e.  ran  P  /\  y  e.  ran  P ) )  ->  y  e.  CC )
14468recnd 9622 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ran  G )  ->  z  e.  CC )
145144adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( v  e.  ran  P  /\  y  e.  ran  P ) )  ->  z  e.  CC )
146140, 143, 145subcan2ad 9978 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( v  e.  ran  P  /\  y  e.  ran  P ) )  ->  (
( v  -  z
)  =  ( y  -  z )  <->  v  =  y ) )
147146ex 434 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
( v  e.  ran  P  /\  y  e.  ran  P )  ->  ( (
v  -  z )  =  ( y  -  z )  <->  v  =  y ) ) )
148138, 147dom2lem 7554 . . . . . . 7  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
v  e.  ran  P  |->  ( v  -  z
) ) : ran  P
-1-1-> RR )
149 f1f1orn 5814 . . . . . . 7  |-  ( ( v  e.  ran  P  |->  ( v  -  z
) ) : ran  P
-1-1-> RR  ->  ( v  e.  ran  P  |->  ( v  -  z ) ) : ran  P -1-1-onto-> ran  (
v  e.  ran  P  |->  ( v  -  z
) ) )
150148, 149syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
v  e.  ran  P  |->  ( v  -  z
) ) : ran  P -1-1-onto-> ran  ( v  e.  ran  P 
|->  ( v  -  z
) ) )
151 oveq1 6285 . . . . . . . 8  |-  ( v  =  w  ->  (
v  -  z )  =  ( w  -  z ) )
152 eqid 2441 . . . . . . . 8  |-  ( v  e.  ran  P  |->  ( v  -  z ) )  =  ( v  e.  ran  P  |->  ( v  -  z ) )
153 ovex 6306 . . . . . . . 8  |-  ( w  -  z )  e. 
_V
154151, 152, 153fvmpt 5938 . . . . . . 7  |-  ( w  e.  ran  P  -> 
( ( v  e. 
ran  P  |->  ( v  -  z ) ) `
 w )  =  ( w  -  z
) )
155154adantl 466 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  ( ( v  e.  ran  P  |->  ( v  -  z ) ) `  w )  =  ( w  -  z ) )
156 f1f 5768 . . . . . . . . . . 11  |-  ( ( v  e.  ran  P  |->  ( v  -  z
) ) : ran  P
-1-1-> RR  ->  ( v  e.  ran  P  |->  ( v  -  z ) ) : ran  P --> RR )
157 frn 5724 . . . . . . . . . . 11  |-  ( ( v  e.  ran  P  |->  ( v  -  z
) ) : ran  P --> RR  ->  ran  ( v  e.  ran  P  |->  ( v  -  z ) )  C_  RR )
158148, 156, 1573syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  C_  RR )
159158sselda 3487 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  y  e.  RR )
16068adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  z  e.  RR )
161159, 160readdcld 9623 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  (
y  +  z )  e.  RR )
162110ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  I : ( RR  X.  RR ) --> RR )
163162, 159, 160fovrnd 6429 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  (
y I z )  e.  RR )
164161, 163remulcld 9624 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  (
( y  +  z )  x.  ( y I z ) )  e.  RR )
165164recnd 9622 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )  ->  (
( y  +  z )  x.  ( y I z ) )  e.  CC )
166132, 133, 150, 155, 165fsumf1o 13521 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ y  e.  ran  ( v  e. 
ran  P  |->  ( v  -  z ) ) ( ( y  +  z )  x.  (
y I z ) )  =  sum_ w  e.  ran  P ( ( ( w  -  z
)  +  z )  x.  ( ( w  -  z ) I z ) ) )
167134sselda 3487 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  w  e.  RR )
168167recnd 9622 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  w  e.  CC )
169144adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  z  e.  CC )
170168, 169npcand 9937 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  ( ( w  -  z )  +  z )  =  w )
171170oveq1d 6293 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ran  P )  ->  ( ( ( w  -  z )  +  z )  x.  ( ( w  -  z ) I z ) )  =  ( w  x.  ( ( w  -  z ) I z ) ) )
172171sumeq2dv 13501 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ w  e.  ran  P ( ( ( w  -  z
)  +  z )  x.  ( ( w  -  z ) I z ) )  = 
sum_ w  e.  ran  P ( w  x.  (
( w  -  z
) I z ) ) )
173166, 172eqtrd 2482 . . . 4  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ y  e.  ran  ( v  e. 
ran  P  |->  ( v  -  z ) ) ( ( y  +  z )  x.  (
y I z ) )  =  sum_ w  e.  ran  P ( w  x.  ( ( w  -  z ) I z ) ) )
17442ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( ran  F  X.  ran  G )  C_  dom  +  )
175 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  y  e.  ran  F )
176 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  z  e.  ran  G )
177 opelxpi 5018 . . . . . . . . . . . 12  |-  ( ( y  e.  ran  F  /\  z  e.  ran  G )  ->  <. y ,  z >.  e.  ( ran  F  X.  ran  G
) )
178175, 176, 177syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  <. y ,  z
>.  e.  ( ran  F  X.  ran  G ) )
179 funfvima2 6130 . . . . . . . . . . . 12  |-  ( ( Fun  +  /\  ( ran  F  X.  ran  G
)  C_  dom  +  )  ->  ( <. y ,  z >.  e.  ( ran  F  X.  ran  G )  ->  (  +  ` 
<. y ,  z >.
)  e.  (  + 
" ( ran  F  X.  ran  G ) ) ) )
18040, 179mpan 670 . . . . . . . . . . 11  |-  ( ( ran  F  X.  ran  G )  C_  dom  +  ->  (
<. y ,  z >.  e.  ( ran  F  X.  ran  G )  ->  (  +  `  <. y ,  z
>. )  e.  (  +  " ( ran  F  X.  ran  G ) ) ) )
181174, 178, 180sylc 60 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  (  +  `  <. y ,  z >.
)  e.  (  + 
" ( ran  F  X.  ran  G ) ) )
182 df-ov 6281 . . . . . . . . . 10  |-  ( y  +  z )  =  (  +  `  <. y ,  z >. )
183181, 182, 503eltr4g 2547 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( y  +  z )  e.  ran  P )
18467adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  y  e.  RR )
185184recnd 9622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  y  e.  CC )
186144adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  z  e.  CC )
187185, 186pncand 9934 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( ( y  +  z )  -  z )  =  y )
188187eqcomd 2449 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  y  =  ( ( y  +  z )  -  z ) )
189 oveq1 6285 . . . . . . . . . . 11  |-  ( v  =  ( y  +  z )  ->  (
v  -  z )  =  ( ( y  +  z )  -  z ) )
190189eqeq2d 2455 . . . . . . . . . 10  |-  ( v  =  ( y  +  z )  ->  (
y  =  ( v  -  z )  <->  y  =  ( ( y  +  z )  -  z
) ) )
191190rspcev 3194 . . . . . . . . 9  |-  ( ( ( y  +  z )  e.  ran  P  /\  y  =  (
( y  +  z )  -  z ) )  ->  E. v  e.  ran  P  y  =  ( v  -  z
) )
192183, 188, 191syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  E. v  e.  ran  P  y  =  ( v  -  z ) )
193192ralrimiva 2855 . . . . . . 7  |-  ( (
ph  /\  z  e.  ran  G )  ->  A. y  e.  ran  F E. v  e.  ran  P  y  =  ( v  -  z
) )
194 ssabral 3554 . . . . . . 7  |-  ( ran 
F  C_  { y  |  E. v  e.  ran  P  y  =  ( v  -  z ) }  <->  A. y  e.  ran  F E. v  e.  ran  P  y  =  ( v  -  z ) )
195193, 194sylibr 212 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  F 
C_  { y  |  E. v  e.  ran  P  y  =  ( v  -  z ) } )
196152rnmpt 5235 . . . . . 6  |-  ran  (
v  e.  ran  P  |->  ( v  -  z
) )  =  {
y  |  E. v  e.  ran  P  y  =  ( v  -  z
) }
197195, 196syl6sseqr 3534 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  F 
C_  ran  ( v  e.  ran  P  |->  ( v  -  z ) ) )
19868adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  z  e.  RR )
199184, 198readdcld 9623 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( y  +  z )  e.  RR )
200110ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  I : ( RR  X.  RR ) --> RR )
201200, 184, 198fovrnd 6429 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( y I z )  e.  RR )
202199, 201remulcld 9624 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( ( y  +  z )  x.  ( y I z ) )  e.  RR )
203202recnd 9622 . . . . 5  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ran  F )  ->  ( ( y  +  z )  x.  ( y I z ) )  e.  CC )
204158ssdifd 3623 . . . . . . 7  |-  ( (
ph  /\  z  e.  ran  G )  ->  ( ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  \  ran  F )  C_  ( RR  \  ran  F ) )
205204sselda 3487 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ( ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  \  ran  F ) )  ->  y  e.  ( RR  \  ran  F ) )
206 eldifi 3609 . . . . . . . . . . . . 13  |-  ( y  e.  ( RR  \  ran  F )  ->  y  e.  RR )
207206ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  y  e.  RR )
20868adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  z  e.  RR )
209 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  -.  ( y  =  0  /\  z  =  0 ) )
2101, 2, 107itg1addlem3 21975 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR  /\  z  e.  RR )  /\  -.  ( y  =  0  /\  z  =  0 ) )  ->  ( y I z )  =  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
211207, 208, 209, 210syl21anc 1226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
y I z )  =  ( vol `  (
( `' F " { y } )  i^i  ( `' G " { z } ) ) ) )
212 inss1 3701 . . . . . . . . . . . . . . 15  |-  ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  ( `' F " { y } )
213 eldifn 3610 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( RR  \  ran  F )  ->  -.  y  e.  ran  F )
214213ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  -.  y  e.  ran  F )
215 vex 3096 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
216 vex 3096 . . . . . . . . . . . . . . . . . . . . 21  |-  v  e. 
_V
217216eliniseg 5353 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  _V  ->  (
v  e.  ( `' F " { y } )  <->  v F
y ) )
218215, 217ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  ( `' F " { y } )  <-> 
v F y )
219216, 215brelrn 5220 . . . . . . . . . . . . . . . . . . 19  |-  ( v F y  ->  y  e.  ran  F )
220218, 219sylbi 195 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ( `' F " { y } )  ->  y  e.  ran  F )
221214, 220nsyl 121 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  -.  v  e.  ( `' F " { y } ) )
222221pm2.21d 106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
v  e.  ( `' F " { y } )  ->  v  e.  (/) ) )
223222ssrdv 3493 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  ( `' F " { y } )  C_  (/) )
224212, 223syl5ss 3498 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  (/) )
225 ss0 3799 . . . . . . . . . . . . . 14  |-  ( ( ( `' F " { y } )  i^i  ( `' G " { z } ) )  C_  (/)  ->  (
( `' F " { y } )  i^i  ( `' G " { z } ) )  =  (/) )
226224, 225syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
( `' F " { y } )  i^i  ( `' G " { z } ) )  =  (/) )
227226fveq2d 5857 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )  =  ( vol `  (/) ) )
228 0mbl 21820 . . . . . . . . . . . . . 14  |-  (/)  e.  dom  vol
229 mblvol 21811 . . . . . . . . . . . . . 14  |-  ( (/)  e.  dom  vol  ->  ( vol `  (/) )  =  ( vol* `  (/) ) )
230228, 229ax-mp 5 . . . . . . . . . . . . 13  |-  ( vol `  (/) )  =  ( vol* `  (/) )
231 ovol0 21774 . . . . . . . . . . . . 13  |-  ( vol* `  (/) )  =  0
232230, 231eqtri 2470 . . . . . . . . . . . 12  |-  ( vol `  (/) )  =  0
233227, 232syl6eq 2498 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  ( vol `  ( ( `' F " { y } )  i^i  ( `' G " { z } ) ) )  =  0 )
234211, 233eqtrd 2482 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
y I z )  =  0 )
235234oveq2d 6294 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
( y  +  z )  x.  ( y I z ) )  =  ( ( y  +  z )  x.  0 ) )
236207, 208readdcld 9623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
y  +  z )  e.  RR )
237236recnd 9622 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
y  +  z )  e.  CC )
238237mul01d 9779 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
( y  +  z )  x.  0 )  =  0 )
239235, 238eqtrd 2482 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  ( y  e.  ( RR  \  ran  F
)  /\  -.  (
y  =  0  /\  z  =  0 ) ) )  ->  (
( y  +  z )  x.  ( y I z ) )  =  0 )
240239expr 615 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ( RR  \  ran  F ) )  ->  ( -.  (
y  =  0  /\  z  =  0 )  ->  ( ( y  +  z )  x.  ( y I z ) )  =  0 ) )
241 oveq12 6287 . . . . . . . . . 10  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( y  +  z )  =  ( 0  +  0 ) )
242241, 103syl6eq 2498 . . . . . . . . 9  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( y  +  z )  =  0 )
243 oveq12 6287 . . . . . . . . . 10  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( y I z )  =  ( 0 I 0 ) )
244 0re 9596 . . . . . . . . . . 11  |-  0  e.  RR
245 iftrue 3929 . . . . . . . . . . . 12  |-  ( ( i  =  0  /\  j  =  0 )  ->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  =  0 )
246 c0ex 9590 . . . . . . . . . . . 12  |-  0  e.  _V
247245, 107, 246ovmpt2a 6415 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  0  e.  RR )  ->  ( 0 I 0 )  =  0 )
248244, 244, 247mp2an 672 . . . . . . . . . 10  |-  ( 0 I 0 )  =  0
249243, 248syl6eq 2498 . . . . . . . . 9  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( y I z )  =  0 )
250242, 249oveq12d 6296 . . . . . . . 8  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( ( y  +  z )  x.  ( y I z ) )  =  ( 0  x.  0 ) )
251 0cn 9588 . . . . . . . . 9  |-  0  e.  CC
252251mul01i 9770 . . . . . . . 8  |-  ( 0  x.  0 )  =  0
253250, 252syl6eq 2498 . . . . . . 7  |-  ( ( y  =  0  /\  z  =  0 )  ->  ( ( y  +  z )  x.  ( y I z ) )  =  0 )
254240, 253pm2.61d2 160 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ( RR  \  ran  F ) )  ->  ( ( y  +  z )  x.  ( y I z ) )  =  0 )
255205, 254syldan 470 . . . . 5  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  y  e.  ( ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  \  ran  F ) )  ->  (
( y  +  z )  x.  ( y I z ) )  =  0 )
256 f1ofo 5810 . . . . . . 7  |-  ( ( v  e.  ran  P  |->  ( v  -  z
) ) : ran  P -1-1-onto-> ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  ->  (
v  e.  ran  P  |->  ( v  -  z
) ) : ran  P
-onto->
ran  ( v  e. 
ran  P  |->  ( v  -  z ) ) )
257150, 256syl 16 . . . . . 6  |-  ( (
ph  /\  z  e.  ran  G )  ->  (
v  e.  ran  P  |->  ( v  -  z
) ) : ran  P
-onto->
ran  ( v  e. 
ran  P  |->  ( v  -  z ) ) )
258 fofi 7805 . . . . . 6  |-  ( ( ran  P  e.  Fin  /\  ( v  e.  ran  P 
|->  ( v  -  z
) ) : ran  P
-onto->
ran  ( v  e. 
ran  P  |->  ( v  -  z ) ) )  ->  ran  ( v  e.  ran  P  |->  ( v  -  z ) )  e.  Fin )
259133, 257, 258syl2anc 661 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  ran  ( v  e.  ran  P 
|->  ( v  -  z
) )  e.  Fin )
260197, 203, 255, 259fsumss 13523 . . . 4  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ y  e.  ran  F ( ( y  +  z )  x.  ( y I z ) )  = 
sum_ y  e.  ran  ( v  e.  ran  P 
|->  ( v  -  z
) ) ( ( y  +  z )  x.  ( y I z ) ) )
26135a1i 11 . . . . 5  |-  ( (
ph  /\  z  e.  ran  G )  ->  ( ran  P  \  { 0 } )  C_  ran  P )
262126an32s 802 . . . . 5  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ( ran  P 
\  { 0 } ) )  ->  (
w  x.  ( ( w  -  z ) I z ) )  e.  CC )
263 dfin4 3721 . . . . . . . 8  |-  ( ran 
P  i^i  { 0 } )  =  ( ran  P  \  ( ran  P  \  { 0 } ) )
264 inss2 3702 . . . . . . . 8  |-  ( ran 
P  i^i  { 0 } )  C_  { 0 }
265263, 264eqsstr3i 3518 . . . . . . 7  |-  ( ran 
P  \  ( ran  P 
\  { 0 } ) )  C_  { 0 }
266265sseli 3483 . . . . . 6  |-  ( w  e.  ( ran  P  \  ( ran  P  \  { 0 } ) )  ->  w  e.  { 0 } )
267 elsni 4036 . . . . . . . . 9  |-  ( w  e.  { 0 }  ->  w  =  0 )
268267adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  w  =  0 )
269268oveq1d 6293 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
w  x.  ( ( w  -  z ) I z ) )  =  ( 0  x.  ( ( w  -  z ) I z ) ) )
270110ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  I : ( RR  X.  RR ) --> RR )
271268, 244syl6eqel 2537 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  w  e.  RR )
27268adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  z  e.  RR )
273271, 272resubcld 9990 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
w  -  z )  e.  RR )
274270, 273, 272fovrnd 6429 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
( w  -  z
) I z )  e.  RR )
275274recnd 9622 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
( w  -  z
) I z )  e.  CC )
276275mul02d 9778 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
0  x.  ( ( w  -  z ) I z ) )  =  0 )
277269, 276eqtrd 2482 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  { 0 } )  ->  (
w  x.  ( ( w  -  z ) I z ) )  =  0 )
278266, 277sylan2 474 . . . . 5  |-  ( ( ( ph  /\  z  e.  ran  G )  /\  w  e.  ( ran  P 
\  ( ran  P  \  { 0 } ) ) )  ->  (
w  x.  ( ( w  -  z ) I z ) )  =  0 )
279261, 262, 278, 133fsumss 13523 . . . 4  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  (
( w  -  z
) I z ) )  =  sum_ w  e.  ran  P ( w  x.  ( ( w  -  z ) I z ) ) )
280173, 260, 2793eqtr4d 2492 . . 3  |-  ( (
ph  /\  z  e.  ran  G )  ->  sum_ y  e.  ran  F ( ( y  +  z )  x.  ( y I z ) )  = 
sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  ( ( w  -  z ) I z ) ) )
281280sumeq2dv 13501 . 2  |-  ( ph  -> 
sum_ z  e.  ran  G
sum_ y  e.  ran  F ( ( y  +  z )  x.  (
y I z ) )  =  sum_ z  e.  ran  G sum_ w  e.  ( ran  P  \  { 0 } ) ( w  x.  (
( w  -  z
) I z ) ) )
282203anasss 647 . . 3  |-  ( (
ph  /\  ( z  e.  ran  G  /\  y  e.  ran  F ) )  ->  ( ( y  +  z )  x.  ( y I z ) )  e.  CC )
2837, 5, 282fsumcom 13566 . 2  |-  ( ph  -> 
sum_ z  e.  ran  G
sum_ y  e.  ran  F ( ( y  +  z )  x.  (
y I z ) )  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) ) )
284129, 281, 2833eqtr2d 2488 1  |-  ( ph  ->  ( S.1 `  ( F  oF  +  G
) )  =  sum_ y  e.  ran  F sum_ z  e.  ran  G ( ( y  +  z )  x.  ( y I z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   {cab 2426    =/= wne 2636   A.wral 2791   E.wrex 2792   _Vcvv 3093    \ cdif 3456    i^i cin 3458    C_ wss 3459   (/)c0 3768   ifcif 3923   {csn 4011   <.cop 4017   U_ciun 4312   class class class wbr 4434    |-> cmpt 4492    X. cxp 4984   `'ccnv 4985   dom cdm 4986   ran crn 4987    |` cres 4988   "cima 4989   Fun wfun 5569    Fn wfn 5570   -->wf 5571   -1-1->wf1 5572   -onto->wfo 5573   -1-1-onto->wf1o 5574   ` cfv 5575  (class class class)co 6278    |-> cmpt2 6280    oFcof 6520   Fincfn 7515   CCcc 9490   RRcr 9491   0cc0 9492    + caddc 9495    x. cmul 9497    - cmin 9807   sum_csu 13484   vol*covol 21744   volcvol 21745   S.1citg1 21894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-disj 4405  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6522  df-om 6683  df-1st 6782  df-2nd 6783  df-recs 7041  df-rdg 7075  df-1o 7129  df-2o 7130  df-oadd 7133  df-er 7310  df-map 7421  df-pm 7422  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-sup 7900  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-n0 10799  df-z 10868  df-uz 11088  df-q 11189  df-rp 11227  df-xadd 11325  df-ioo 11539  df-ico 11541  df-icc 11542  df-fz 11679  df-fzo 11801  df-fl 11905  df-seq 12084  df-exp 12143  df-hash 12382  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-clim 13287  df-sum 13485  df-xmet 18283  df-met 18284  df-ovol 21746  df-vol 21747  df-mbf 21898  df-itg1 21899
This theorem is referenced by:  itg1addlem5  21977
  Copyright terms: Public domain W3C validator