MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Unicode version

Theorem itg1addlem2 21197
Description: Lemma for itg1add 21201. The function  I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both  i and  j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 21199 and itg1addlem5 21200. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
itg1add.3  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
Assertion
Ref Expression
itg1addlem2  |-  ( ph  ->  I : ( RR 
X.  RR ) --> RR )
Distinct variable groups:    i, j, F    i, G, j    ph, i,
j
Allowed substitution hints:    I( i, j)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 3820 . . . . . . . 8  |-  ( -.  ( i  =  0  /\  j  =  0 )  ->  if (
( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  =  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )
21adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  if (
( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  =  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )
3 i1fadd.1 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  dom  S.1 )
4 i1fima 21178 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( `' F " { i } )  e.  dom  vol )
53, 4syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' F " { i } )  e.  dom  vol )
6 i1fadd.2 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1fima 21178 . . . . . . . . . . 11  |-  ( G  e.  dom  S.1  ->  ( `' G " { j } )  e.  dom  vol )
86, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( `' G " { j } )  e.  dom  vol )
9 inmbl 21045 . . . . . . . . . 10  |-  ( ( ( `' F " { i } )  e.  dom  vol  /\  ( `' G " { j } )  e.  dom  vol )  ->  ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  e. 
dom  vol )
105, 8, 9syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  e.  dom  vol )
1110ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  e. 
dom  vol )
12 mblvol 21035 . . . . . . . 8  |-  ( ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  e.  dom  vol  ->  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) )  =  ( vol* `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )
1311, 12syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  ( vol `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  =  ( vol* `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )
142, 13eqtrd 2475 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  if (
( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  =  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )
15 neorian 2720 . . . . . . 7  |-  ( ( i  =/=  0  \/  j  =/=  0 )  <->  -.  ( i  =  0  /\  j  =  0 ) )
16 inss1 3591 . . . . . . . . . 10  |-  ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' F " { i } )
1716a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  (
( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' F " { i } ) )
185ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( `' F " { i } )  e.  dom  vol )
19 mblss 21036 . . . . . . . . . 10  |-  ( ( `' F " { i } )  e.  dom  vol 
->  ( `' F " { i } ) 
C_  RR )
2018, 19syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( `' F " { i } )  C_  RR )
21 mblvol 21035 . . . . . . . . . . 11  |-  ( ( `' F " { i } )  e.  dom  vol 
->  ( vol `  ( `' F " { i } ) )  =  ( vol* `  ( `' F " { i } ) ) )
2218, 21syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( vol `  ( `' F " { i } ) )  =  ( vol* `  ( `' F " { i } ) ) )
233ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  F  e.  dom  S.1 )
24 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  i  e.  RR )
25 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  i  =/=  0 )
26 eldifsn 4021 . . . . . . . . . . . 12  |-  ( i  e.  ( RR  \  { 0 } )  <-> 
( i  e.  RR  /\  i  =/=  0 ) )
2724, 25, 26sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  i  e.  ( RR  \  {
0 } ) )
28 i1fima2sn 21180 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S.1  /\  i  e.  ( RR 
\  { 0 } ) )  ->  ( vol `  ( `' F " { i } ) )  e.  RR )
2923, 27, 28syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( vol `  ( `' F " { i } ) )  e.  RR )
3022, 29eqeltrrd 2518 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( vol* `  ( `' F " { i } ) )  e.  RR )
31 ovolsscl 20991 . . . . . . . . 9  |-  ( ( ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' F " { i } )  /\  ( `' F " { i } )  C_  RR  /\  ( vol* `  ( `' F " { i } ) )  e.  RR )  ->  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
3217, 20, 30, 31syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  i  =/=  0 )  ->  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
33 inss2 3592 . . . . . . . . . 10  |-  ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' G " { j } )
3433a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  (
( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' G " { j } ) )
356adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  RR  /\  j  e.  RR ) )  ->  G  e.  dom  S.1 )
3635, 7syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  RR  /\  j  e.  RR ) )  -> 
( `' G " { j } )  e.  dom  vol )
3736adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( `' G " { j } )  e.  dom  vol )
38 mblss 21036 . . . . . . . . . 10  |-  ( ( `' G " { j } )  e.  dom  vol 
->  ( `' G " { j } ) 
C_  RR )
3937, 38syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( `' G " { j } )  C_  RR )
40 mblvol 21035 . . . . . . . . . . 11  |-  ( ( `' G " { j } )  e.  dom  vol 
->  ( vol `  ( `' G " { j } ) )  =  ( vol* `  ( `' G " { j } ) ) )
4137, 40syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( vol `  ( `' G " { j } ) )  =  ( vol* `  ( `' G " { j } ) ) )
426ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  G  e.  dom  S.1 )
43 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  j  e.  RR )
44 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  j  =/=  0 )
45 eldifsn 4021 . . . . . . . . . . . 12  |-  ( j  e.  ( RR  \  { 0 } )  <-> 
( j  e.  RR  /\  j  =/=  0 ) )
4643, 44, 45sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  j  e.  ( RR  \  {
0 } ) )
47 i1fima2sn 21180 . . . . . . . . . . 11  |-  ( ( G  e.  dom  S.1  /\  j  e.  ( RR 
\  { 0 } ) )  ->  ( vol `  ( `' G " { j } ) )  e.  RR )
4842, 46, 47syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( vol `  ( `' G " { j } ) )  e.  RR )
4941, 48eqeltrrd 2518 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( vol* `  ( `' G " { j } ) )  e.  RR )
50 ovolsscl 20991 . . . . . . . . 9  |-  ( ( ( ( `' F " { i } )  i^i  ( `' G " { j } ) )  C_  ( `' G " { j } )  /\  ( `' G " { j } )  C_  RR  /\  ( vol* `  ( `' G " { j } ) )  e.  RR )  ->  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
5134, 39, 49, 50syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  j  =/=  0 )  ->  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
5232, 51jaodan 783 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  ( i  =/=  0  \/  j  =/=  0 ) )  -> 
( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
5315, 52sylan2br 476 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  ( vol* `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) )  e.  RR )
5414, 53eqeltrd 2517 . . . . 5  |-  ( ( ( ph  /\  (
i  e.  RR  /\  j  e.  RR )
)  /\  -.  (
i  =  0  /\  j  =  0 ) )  ->  if (
( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR )
5554ex 434 . . . 4  |-  ( (
ph  /\  ( i  e.  RR  /\  j  e.  RR ) )  -> 
( -.  ( i  =  0  /\  j  =  0 )  ->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR ) )
56 iftrue 3818 . . . . 5  |-  ( ( i  =  0  /\  j  =  0 )  ->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  =  0 )
57 0re 9407 . . . . 5  |-  0  e.  RR
5856, 57syl6eqel 2531 . . . 4  |-  ( ( i  =  0  /\  j  =  0 )  ->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR )
5955, 58pm2.61d2 160 . . 3  |-  ( (
ph  /\  ( i  e.  RR  /\  j  e.  RR ) )  ->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR )
6059ralrimivva 2829 . 2  |-  ( ph  ->  A. i  e.  RR  A. j  e.  RR  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR )
61 itg1add.3 . . 3  |-  I  =  ( i  e.  RR ,  j  e.  RR  |->  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  (
( `' F " { i } )  i^i  ( `' G " { j } ) ) ) ) )
6261fmpt2 6662 . 2  |-  ( A. i  e.  RR  A. j  e.  RR  if ( ( i  =  0  /\  j  =  0 ) ,  0 ,  ( vol `  ( ( `' F " { i } )  i^i  ( `' G " { j } ) ) ) )  e.  RR  <->  I :
( RR  X.  RR )
--> RR )
6360, 62sylib 196 1  |-  ( ph  ->  I : ( RR 
X.  RR ) --> RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736    \ cdif 3346    i^i cin 3348    C_ wss 3349   ifcif 3812   {csn 3898    X. cxp 4859   `'ccnv 4860   dom cdm 4861   "cima 4864   -->wf 5435   ` cfv 5439    e. cmpt2 6114   RRcr 9302   0cc0 9303   vol*covol 20968   volcvol 20969   S.1citg1 21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-xadd 11111  df-ioo 11325  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185  df-xmet 17832  df-met 17833  df-ovol 20970  df-vol 20971  df-mbf 21121  df-itg1 21122
This theorem is referenced by:  itg1addlem4  21199  itg1addlem5  21200
  Copyright terms: Public domain W3C validator