MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Unicode version

Theorem itg11 22267
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
Assertion
Ref Expression
itg11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( S.1 `  F
)  =  ( vol `  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem itg11
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 22073 . . . . 5  |-  ( vol* `  (/) )  =  0
2 0mbl 22119 . . . . . 6  |-  (/)  e.  dom  vol
3 mblvol 22110 . . . . . 6  |-  ( (/)  e.  dom  vol  ->  ( vol `  (/) )  =  ( vol* `  (/) ) )
42, 3ax-mp 5 . . . . 5  |-  ( vol `  (/) )  =  ( vol* `  (/) )
5 itg10 22264 . . . . 5  |-  ( S.1 `  ( RR  X.  {
0 } ) )  =  0
61, 4, 53eqtr4ri 2494 . . . 4  |-  ( S.1 `  ( RR  X.  {
0 } ) )  =  ( vol `  (/) )
7 noel 3787 . . . . . . . . 9  |-  -.  x  e.  (/)
8 eleq2 2527 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( x  e.  A  <->  x  e.  (/) ) )
97, 8mtbiri 301 . . . . . . . 8  |-  ( A  =  (/)  ->  -.  x  e.  A )
109iffalsed 3940 . . . . . . 7  |-  ( A  =  (/)  ->  if ( x  e.  A , 
1 ,  0 )  =  0 )
1110mpteq2dv 4526 . . . . . 6  |-  ( A  =  (/)  ->  ( x  e.  RR  |->  if ( x  e.  A , 
1 ,  0 ) )  =  ( x  e.  RR  |->  0 ) )
12 i1f1.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
13 fconstmpt 5032 . . . . . 6  |-  ( RR 
X.  { 0 } )  =  ( x  e.  RR  |->  0 )
1411, 12, 133eqtr4g 2520 . . . . 5  |-  ( A  =  (/)  ->  F  =  ( RR  X.  {
0 } ) )
1514fveq2d 5852 . . . 4  |-  ( A  =  (/)  ->  ( S.1 `  F )  =  ( S.1 `  ( RR 
X.  { 0 } ) ) )
16 fveq2 5848 . . . 4  |-  ( A  =  (/)  ->  ( vol `  A )  =  ( vol `  (/) ) )
176, 15, 163eqtr4a 2521 . . 3  |-  ( A  =  (/)  ->  ( S.1 `  F )  =  ( vol `  A ) )
1817a1i 11 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( A  =  (/)  ->  ( S.1 `  F
)  =  ( vol `  A ) ) )
19 n0 3793 . . 3  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
2012i1f1 22266 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
2120adantr 463 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  F  e.  dom  S.1 )
22 itg1val 22259 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ z  e.  ( ran  F  \  {
0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
2321, 22syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( S.1 `  F )  =  sum_ z  e.  ( ran  F 
\  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
2412i1f1lem 22265 . . . . . . . . . . . . . 14  |-  ( F : RR --> { 0 ,  1 }  /\  ( A  e.  dom  vol 
->  ( `' F " { 1 } )  =  A ) )
2524simpli 456 . . . . . . . . . . . . 13  |-  F : RR
--> { 0 ,  1 }
26 frn 5719 . . . . . . . . . . . . 13  |-  ( F : RR --> { 0 ,  1 }  ->  ran 
F  C_  { 0 ,  1 } )
2725, 26ax-mp 5 . . . . . . . . . . . 12  |-  ran  F  C_ 
{ 0 ,  1 }
28 ssdif 3625 . . . . . . . . . . . 12  |-  ( ran 
F  C_  { 0 ,  1 }  ->  ( ran  F  \  {
0 } )  C_  ( { 0 ,  1 }  \  { 0 } ) )
2927, 28ax-mp 5 . . . . . . . . . . 11  |-  ( ran 
F  \  { 0 } )  C_  ( { 0 ,  1 }  \  { 0 } )
30 difprsnss 4151 . . . . . . . . . . 11  |-  ( { 0 ,  1 } 
\  { 0 } )  C_  { 1 }
3129, 30sstri 3498 . . . . . . . . . 10  |-  ( ran 
F  \  { 0 } )  C_  { 1 }
3231a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( ran  F 
\  { 0 } )  C_  { 1 } )
33 mblss 22111 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
3433adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  A  C_  RR )
3534sselda 3489 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  y  e.  RR )
36 eleq1 2526 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
3736ifbid 3951 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  if ( x  e.  A ,  1 ,  0 )  =  if ( y  e.  A , 
1 ,  0 ) )
38 1ex 9580 . . . . . . . . . . . . . . . 16  |-  1  e.  _V
39 c0ex 9579 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
4038, 39ifex 3997 . . . . . . . . . . . . . . 15  |-  if ( y  e.  A , 
1 ,  0 )  e.  _V
4137, 12, 40fvmpt 5931 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( F `  y )  =  if ( y  e.  A ,  1 ,  0 ) )
4235, 41syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  =  if ( y  e.  A ,  1 ,  0 ) )
43 iftrue 3935 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  if ( y  e.  A ,  1 ,  0 )  =  1 )
4443adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  if (
y  e.  A , 
1 ,  0 )  =  1 )
4542, 44eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  =  1 )
46 ffn 5713 . . . . . . . . . . . . . 14  |-  ( F : RR --> { 0 ,  1 }  ->  F  Fn  RR )
4725, 46ax-mp 5 . . . . . . . . . . . . 13  |-  F  Fn  RR
48 fnfvelrn 6004 . . . . . . . . . . . . 13  |-  ( ( F  Fn  RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  ran  F
)
4947, 35, 48sylancr 661 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  ran  F )
5045, 49eqeltrrd 2543 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  e.  ran  F )
51 ax-1ne0 9550 . . . . . . . . . . . 12  |-  1  =/=  0
5251a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  =/=  0 )
53 eldifsn 4141 . . . . . . . . . . 11  |-  ( 1  e.  ( ran  F  \  { 0 } )  <-> 
( 1  e.  ran  F  /\  1  =/=  0
) )
5450, 52, 53sylanbrc 662 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  1  e.  ( ran  F  \  {
0 } ) )
5554snssd 4161 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  { 1 }  C_  ( ran  F  \  { 0 } ) )
5632, 55eqssd 3506 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( ran  F 
\  { 0 } )  =  { 1 } )
5756sumeq1d 13608 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e.  ( ran  F  \  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  sum_ z  e.  { 1 }  ( z  x.  ( vol `  ( `' F " { z } ) ) ) )
58 1re 9584 . . . . . . . . 9  |-  1  e.  RR
5924simpri 460 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  vol  ->  ( `' F " { 1 } )  =  A )
6059ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( `' F " { 1 } )  =  A )
6160fveq2d 5852 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  ( `' F " { 1 } ) )  =  ( vol `  A ) )
6261oveq2d 6286 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  =  ( 1  x.  ( vol `  A
) ) )
63 simplr 753 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  A )  e.  RR )
6463recnd 9611 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( vol `  A )  e.  CC )
6564mulid2d 9603 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  A
) )  =  ( vol `  A ) )
6662, 65eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  =  ( vol `  A
) )
6766, 64eqeltrd 2542 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  e.  CC )
68 id 22 . . . . . . . . . . 11  |-  ( z  =  1  ->  z  =  1 )
69 sneq 4026 . . . . . . . . . . . . 13  |-  ( z  =  1  ->  { z }  =  { 1 } )
7069imaeq2d 5325 . . . . . . . . . . . 12  |-  ( z  =  1  ->  ( `' F " { z } )  =  ( `' F " { 1 } ) )
7170fveq2d 5852 . . . . . . . . . . 11  |-  ( z  =  1  ->  ( vol `  ( `' F " { z } ) )  =  ( vol `  ( `' F " { 1 } ) ) )
7268, 71oveq12d 6288 . . . . . . . . . 10  |-  ( z  =  1  ->  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7372sumsn 13648 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) )  e.  CC )  ->  sum_ z  e.  {
1 }  ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7458, 67, 73sylancr 661 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e. 
{ 1 }  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( 1  x.  ( vol `  ( `' F " { 1 } ) ) ) )
7574, 66eqtrd 2495 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e. 
{ 1 }  (
z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( vol `  A ) )
7657, 75eqtrd 2495 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  sum_ z  e.  ( ran  F  \  { 0 } ) ( z  x.  ( vol `  ( `' F " { z } ) ) )  =  ( vol `  A ) )
7723, 76eqtrd 2495 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  A
)  ->  ( S.1 `  F )  =  ( vol `  A ) )
7877ex 432 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( y  e.  A  ->  ( S.1 `  F )  =  ( vol `  A ) ) )
7978exlimdv 1729 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( E. y 
y  e.  A  -> 
( S.1 `  F )  =  ( vol `  A
) ) )
8019, 79syl5bi 217 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( A  =/=  (/)  ->  ( S.1 `  F
)  =  ( vol `  A ) ) )
8118, 80pm2.61dne 2771 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( S.1 `  F
)  =  ( vol `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649    \ cdif 3458    C_ wss 3461   (/)c0 3783   ifcif 3929   {csn 4016   {cpr 4018    |-> cmpt 4497    X. cxp 4986   `'ccnv 4987   dom cdm 4988   ran crn 4989   "cima 4991    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486   sum_csu 13593   vol*covol 22043   volcvol 22044   S.1citg1 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xadd 11322  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-sum 13594  df-xmet 18610  df-met 18611  df-ovol 22045  df-vol 22046  df-mbf 22197  df-itg1 22198
This theorem is referenced by:  itg2const  22316  itg2addnclem  30309
  Copyright terms: Public domain W3C validator