MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmet Unicode version

Theorem isxmet 18307
Description: Express the predicate " D is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
isxmet  |-  ( X  e.  A  ->  ( D  e.  ( * Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y,
z, D    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem isxmet
Dummy variables  d 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2924 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
2 xpeq12 4856 . . . . . . . . 9  |-  ( ( t  =  X  /\  t  =  X )  ->  ( t  X.  t
)  =  ( X  X.  X ) )
32anidms 627 . . . . . . . 8  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
43oveq2d 6056 . . . . . . 7  |-  ( t  =  X  ->  ( RR*  ^m  ( t  X.  t ) )  =  ( RR*  ^m  ( X  X.  X ) ) )
5 raleq 2864 . . . . . . . . . 10  |-  ( t  =  X  ->  ( A. z  e.  t 
( x d y )  <_  ( (
z d x ) + e ( z d y ) )  <->  A. z  e.  X  ( x d y )  <_  ( (
z d x ) + e ( z d y ) ) ) )
65anbi2d 685 . . . . . . . . 9  |-  ( t  =  X  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) + e
( z d y ) ) )  <->  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) ) )
76raleqbi1dv 2872 . . . . . . . 8  |-  ( t  =  X  ->  ( A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) + e
( z d y ) ) )  <->  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) ) )
87raleqbi1dv 2872 . . . . . . 7  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) + e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) ) )
94, 8rabeqbidv 2911 . . . . . 6  |-  ( t  =  X  ->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) }  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) } )
10 df-xmet 16650 . . . . . 6  |-  * Met  =  ( t  e. 
_V  |->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) } )
11 ovex 6065 . . . . . . 7  |-  ( RR*  ^m  ( X  X.  X
) )  e.  _V
1211rabex 4314 . . . . . 6  |-  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) }  e.  _V
139, 10, 12fvmpt 5765 . . . . 5  |-  ( X  e.  _V  ->  ( * Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) } )
141, 13syl 16 . . . 4  |-  ( X  e.  A  ->  ( * Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) } )
1514eleq2d 2471 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( * Met `  X )  <->  D  e.  { d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x ) + e ( z d y ) ) ) } ) )
16 oveq 6046 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
1716eqeq1d 2412 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
1817bibi1d 311 . . . . . 6  |-  ( d  =  D  ->  (
( ( x d y )  =  0  <-> 
x  =  y )  <-> 
( ( x D y )  =  0  <-> 
x  =  y ) ) )
19 oveq 6046 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
20 oveq 6046 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2119, 20oveq12d 6058 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x ) + e ( z d y ) )  =  ( ( z D x ) + e ( z D y ) ) )
2216, 21breq12d 4185 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x ) + e ( z d y ) )  <-> 
( x D y )  <_  ( (
z D x ) + e ( z D y ) ) ) )
2322ralbidv 2686 . . . . . 6  |-  ( d  =  D  ->  ( A. z  e.  X  ( x d y )  <_  ( (
z d x ) + e ( z d y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) + e ( z D y ) ) ) )
2418, 23anbi12d 692 . . . . 5  |-  ( d  =  D  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) + e
( z d y ) ) )  <->  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) )
25242ralbidv 2708 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) + e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) )
2625elrab 3052 . . 3  |-  ( D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) + e ( z d y ) ) ) }  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) )
2715, 26syl6bb 253 . 2  |-  ( X  e.  A  ->  ( D  e.  ( * Met `  X )  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) ) )
28 xrex 10565 . . . 4  |-  RR*  e.  _V
29 xpexg 4948 . . . . 5  |-  ( ( X  e.  A  /\  X  e.  A )  ->  ( X  X.  X
)  e.  _V )
3029anidms 627 . . . 4  |-  ( X  e.  A  ->  ( X  X.  X )  e. 
_V )
31 elmapg 6990 . . . 4  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3228, 30, 31sylancr 645 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3332anbi1d 686 . 2  |-  ( X  e.  A  ->  (
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
3427, 33bitrd 245 1  |-  ( X  e.  A  ->  ( D  e.  ( * Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916   class class class wbr 4172    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   0cc0 8946   RR*cxr 9075    <_ cle 9077   + ecxad 10664   * Metcxmt 16641
This theorem is referenced by:  isxmetd  18309  xmetf  18312  ismet2  18316  xmeteq0  18321  xmettri2  18323  imasf1oxmet  18358  pstmxmet  24245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-xr 9080  df-xmet 16650
  Copyright terms: Public domain W3C validator