MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvclem Structured version   Unicode version

Theorem isvclem 25146
Description: Lemma for isvc 25150. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
isvclem.1  |-  X  =  ran  G
Assertion
Ref Expression
isvclem  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  CVecOLD  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, z
Allowed substitution hint:    X( y)

Proof of Theorem isvclem
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vc 25115 . . 3  |-  CVecOLD  =  { <. g ,  s
>.  |  ( g  e.  AbelOp  /\  s :
( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) }
21eleq2i 2545 . 2  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  <. G ,  S >.  e.  { <. g ,  s >.  |  ( g  e.  AbelOp  /\  s : ( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) } )
3 eleq1 2539 . . . 4  |-  ( g  =  G  ->  (
g  e.  AbelOp  <->  G  e.  AbelOp ) )
4 rneq 5226 . . . . . 6  |-  ( g  =  G  ->  ran  g  =  ran  G )
5 isvclem.1 . . . . . 6  |-  X  =  ran  G
64, 5syl6eqr 2526 . . . . 5  |-  ( g  =  G  ->  ran  g  =  X )
7 xpeq2 5014 . . . . . . 7  |-  ( ran  g  =  X  -> 
( CC  X.  ran  g )  =  ( CC  X.  X ) )
87feq2d 5716 . . . . . 6  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  ran  g
) --> ran  g  <->  s :
( CC  X.  X
) --> ran  g )
)
9 feq3 5713 . . . . . 6  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  X ) --> ran  g  <->  s :
( CC  X.  X
) --> X ) )
108, 9bitrd 253 . . . . 5  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  ran  g
) --> ran  g  <->  s :
( CC  X.  X
) --> X ) )
116, 10syl 16 . . . 4  |-  ( g  =  G  ->  (
s : ( CC 
X.  ran  g ) --> ran  g  <->  s : ( CC  X.  X ) --> X ) )
12 oveq 6288 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
x g z )  =  ( x G z ) )
1312oveq2d 6298 . . . . . . . . . 10  |-  ( g  =  G  ->  (
y s ( x g z ) )  =  ( y s ( x G z ) ) )
14 oveq 6288 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( y s x ) g ( y s z ) )  =  ( ( y s x ) G ( y s z ) ) )
1513, 14eqeq12d 2489 . . . . . . . . 9  |-  ( g  =  G  ->  (
( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  <->  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) ) ) )
166, 15raleqbidv 3072 . . . . . . . 8  |-  ( g  =  G  ->  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  <->  A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) ) ) )
17 oveq 6288 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
( y s x ) g ( z s x ) )  =  ( ( y s x ) G ( z s x ) ) )
1817eqeq2d 2481 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  <->  ( (
y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) ) ) )
1918anbi1d 704 . . . . . . . . 9  |-  ( g  =  G  ->  (
( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )
2019ralbidv 2903 . . . . . . . 8  |-  ( g  =  G  ->  ( A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )
2116, 20anbi12d 710 . . . . . . 7  |-  ( g  =  G  ->  (
( A. z  e. 
ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  ( A. z  e.  X  (
y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )
2221ralbidv 2903 . . . . . 6  |-  ( g  =  G  ->  ( A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )
2322anbi2d 703 . . . . 5  |-  ( g  =  G  ->  (
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <-> 
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) )
246, 23raleqbidv 3072 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <->  A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) )
253, 11, 243anbi123d 1299 . . 3  |-  ( g  =  G  ->  (
( g  e.  AbelOp  /\  s : ( CC 
X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )  <->  ( G  e. 
AbelOp  /\  s : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) ) )
26 feq1 5711 . . . 4  |-  ( s  =  S  ->  (
s : ( CC 
X.  X ) --> X  <-> 
S : ( CC 
X.  X ) --> X ) )
27 oveq 6288 . . . . . . 7  |-  ( s  =  S  ->  (
1 s x )  =  ( 1 S x ) )
2827eqeq1d 2469 . . . . . 6  |-  ( s  =  S  ->  (
( 1 s x )  =  x  <->  ( 1 S x )  =  x ) )
29 oveq 6288 . . . . . . . . . 10  |-  ( s  =  S  ->  (
y s ( x G z ) )  =  ( y S ( x G z ) ) )
30 oveq 6288 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s x )  =  ( y S x ) )
31 oveq 6288 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s z )  =  ( y S z ) )
3230, 31oveq12d 6300 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( y s x ) G ( y s z ) )  =  ( ( y S x ) G ( y S z ) ) )
3329, 32eqeq12d 2489 . . . . . . . . 9  |-  ( s  =  S  ->  (
( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  <->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) ) )
3433ralbidv 2903 . . . . . . . 8  |-  ( s  =  S  ->  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  <->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) ) )
35 oveq 6288 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y  +  z ) s x )  =  ( ( y  +  z ) S x ) )
36 oveq 6288 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
z s x )  =  ( z S x ) )
3730, 36oveq12d 6300 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y s x ) G ( z s x ) )  =  ( ( y S x ) G ( z S x ) ) )
3835, 37eqeq12d 2489 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  <->  ( (
y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) ) )
39 oveq 6288 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y  x.  z
) s x )  =  ( ( y  x.  z ) S x ) )
40 oveq 6288 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
y s ( z s x ) )  =  ( y S ( z s x ) ) )
4136oveq2d 6298 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
y S ( z s x ) )  =  ( y S ( z S x ) ) )
4240, 41eqtrd 2508 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s ( z s x ) )  =  ( y S ( z S x ) ) )
4339, 42eqeq12d 2489 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( ( y  x.  z ) s x )  =  ( y s ( z s x ) )  <->  ( (
y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
4438, 43anbi12d 710 . . . . . . . . 9  |-  ( s  =  S  ->  (
( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
4544ralbidv 2903 . . . . . . . 8  |-  ( s  =  S  ->  ( A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
4634, 45anbi12d 710 . . . . . . 7  |-  ( s  =  S  ->  (
( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  ( A. z  e.  X  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
4746ralbidv 2903 . . . . . 6  |-  ( s  =  S  ->  ( A. y  e.  CC  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
4828, 47anbi12d 710 . . . . 5  |-  ( s  =  S  ->  (
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <-> 
( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
4948ralbidv 2903 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <->  A. x  e.  X  ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
5026, 493anbi23d 1302 . . 3  |-  ( s  =  S  ->  (
( G  e.  AbelOp  /\  s : ( CC 
X.  X ) --> X  /\  A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
5125, 50opelopabg 4765 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  { <. g ,  s >.  |  ( g  e.  AbelOp  /\  s : ( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) }  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
522, 51syl5bb 257 1  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  CVecOLD  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   <.cop 4033   {copab 4504    X. cxp 4997   ran crn 5000   -->wf 5582  (class class class)co 6282   CCcc 9486   1c1 9489    + caddc 9491    x. cmul 9493   AbelOpcablo 24959   CVecOLDcvc 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-vc 25115
This theorem is referenced by:  vcoprnelem  25147  isvc  25150
  Copyright terms: Public domain W3C validator