MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvclem Structured version   Unicode version

Theorem isvclem 24100
Description: Lemma for isvc 24104. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
isvclem.1  |-  X  =  ran  G
Assertion
Ref Expression
isvclem  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  CVecOLD  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, z
Allowed substitution hint:    X( y)

Proof of Theorem isvclem
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vc 24069 . . 3  |-  CVecOLD  =  { <. g ,  s
>.  |  ( g  e.  AbelOp  /\  s :
( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) }
21eleq2i 2529 . 2  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  <. G ,  S >.  e.  { <. g ,  s >.  |  ( g  e.  AbelOp  /\  s : ( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) } )
3 eleq1 2523 . . . 4  |-  ( g  =  G  ->  (
g  e.  AbelOp  <->  G  e.  AbelOp ) )
4 rneq 5166 . . . . . 6  |-  ( g  =  G  ->  ran  g  =  ran  G )
5 isvclem.1 . . . . . 6  |-  X  =  ran  G
64, 5syl6eqr 2510 . . . . 5  |-  ( g  =  G  ->  ran  g  =  X )
7 xpeq2 4956 . . . . . . 7  |-  ( ran  g  =  X  -> 
( CC  X.  ran  g )  =  ( CC  X.  X ) )
87feq2d 5648 . . . . . 6  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  ran  g
) --> ran  g  <->  s :
( CC  X.  X
) --> ran  g )
)
9 feq3 5645 . . . . . 6  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  X ) --> ran  g  <->  s :
( CC  X.  X
) --> X ) )
108, 9bitrd 253 . . . . 5  |-  ( ran  g  =  X  -> 
( s : ( CC  X.  ran  g
) --> ran  g  <->  s :
( CC  X.  X
) --> X ) )
116, 10syl 16 . . . 4  |-  ( g  =  G  ->  (
s : ( CC 
X.  ran  g ) --> ran  g  <->  s : ( CC  X.  X ) --> X ) )
12 oveq 6199 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
x g z )  =  ( x G z ) )
1312oveq2d 6209 . . . . . . . . . 10  |-  ( g  =  G  ->  (
y s ( x g z ) )  =  ( y s ( x G z ) ) )
14 oveq 6199 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( y s x ) g ( y s z ) )  =  ( ( y s x ) G ( y s z ) ) )
1513, 14eqeq12d 2473 . . . . . . . . 9  |-  ( g  =  G  ->  (
( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  <->  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) ) ) )
166, 15raleqbidv 3030 . . . . . . . 8  |-  ( g  =  G  ->  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  <->  A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) ) ) )
17 oveq 6199 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
( y s x ) g ( z s x ) )  =  ( ( y s x ) G ( z s x ) ) )
1817eqeq2d 2465 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  <->  ( (
y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) ) ) )
1918anbi1d 704 . . . . . . . . 9  |-  ( g  =  G  ->  (
( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )
2019ralbidv 2841 . . . . . . . 8  |-  ( g  =  G  ->  ( A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )
2116, 20anbi12d 710 . . . . . . 7  |-  ( g  =  G  ->  (
( A. z  e. 
ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  ( A. z  e.  X  (
y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )
2221ralbidv 2841 . . . . . 6  |-  ( g  =  G  ->  ( A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )
2322anbi2d 703 . . . . 5  |-  ( g  =  G  ->  (
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <-> 
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) )
246, 23raleqbidv 3030 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <->  A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) )
253, 11, 243anbi123d 1290 . . 3  |-  ( g  =  G  ->  (
( g  e.  AbelOp  /\  s : ( CC 
X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )  <->  ( G  e. 
AbelOp  /\  s : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) ) )
26 feq1 5643 . . . 4  |-  ( s  =  S  ->  (
s : ( CC 
X.  X ) --> X  <-> 
S : ( CC 
X.  X ) --> X ) )
27 oveq 6199 . . . . . . 7  |-  ( s  =  S  ->  (
1 s x )  =  ( 1 S x ) )
2827eqeq1d 2453 . . . . . 6  |-  ( s  =  S  ->  (
( 1 s x )  =  x  <->  ( 1 S x )  =  x ) )
29 oveq 6199 . . . . . . . . . 10  |-  ( s  =  S  ->  (
y s ( x G z ) )  =  ( y S ( x G z ) ) )
30 oveq 6199 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s x )  =  ( y S x ) )
31 oveq 6199 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s z )  =  ( y S z ) )
3230, 31oveq12d 6211 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( y s x ) G ( y s z ) )  =  ( ( y S x ) G ( y S z ) ) )
3329, 32eqeq12d 2473 . . . . . . . . 9  |-  ( s  =  S  ->  (
( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  <->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) ) )
3433ralbidv 2841 . . . . . . . 8  |-  ( s  =  S  ->  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  <->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) ) )
35 oveq 6199 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y  +  z ) s x )  =  ( ( y  +  z ) S x ) )
36 oveq 6199 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
z s x )  =  ( z S x ) )
3730, 36oveq12d 6211 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y s x ) G ( z s x ) )  =  ( ( y S x ) G ( z S x ) ) )
3835, 37eqeq12d 2473 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  <->  ( (
y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) ) )
39 oveq 6199 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
( y  x.  z
) s x )  =  ( ( y  x.  z ) S x ) )
40 oveq 6199 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
y s ( z s x ) )  =  ( y S ( z s x ) ) )
4136oveq2d 6209 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
y S ( z s x ) )  =  ( y S ( z S x ) ) )
4240, 41eqtrd 2492 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
y s ( z s x ) )  =  ( y S ( z S x ) ) )
4339, 42eqeq12d 2473 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( ( y  x.  z ) s x )  =  ( y s ( z s x ) )  <->  ( (
y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
4438, 43anbi12d 710 . . . . . . . . 9  |-  ( s  =  S  ->  (
( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
4544ralbidv 2841 . . . . . . . 8  |-  ( s  =  S  ->  ( A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) )  <->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
4634, 45anbi12d 710 . . . . . . 7  |-  ( s  =  S  ->  (
( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  ( A. z  e.  X  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
4746ralbidv 2841 . . . . . 6  |-  ( s  =  S  ->  ( A. y  e.  CC  ( A. z  e.  X  ( y s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) )  <->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
4828, 47anbi12d 710 . . . . 5  |-  ( s  =  S  ->  (
( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <-> 
( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
4948ralbidv 2841 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) )  <->  A. x  e.  X  ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
5026, 493anbi23d 1293 . . 3  |-  ( s  =  S  ->  (
( G  e.  AbelOp  /\  s : ( CC 
X.  X ) --> X  /\  A. x  e.  X  ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y
s ( x G z ) )  =  ( ( y s x ) G ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) G ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) )  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
5125, 50opelopabg 4708 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  { <. g ,  s >.  |  ( g  e.  AbelOp  /\  s : ( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) }  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
522, 51syl5bb 257 1  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  CVecOLD  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3071   <.cop 3984   {copab 4450    X. cxp 4939   ran crn 4942   -->wf 5515  (class class class)co 6193   CCcc 9384   1c1 9387    + caddc 9389    x. cmul 9391   AbelOpcablo 23913   CVecOLDcvc 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-fv 5527  df-ov 6196  df-vc 24069
This theorem is referenced by:  vcoprnelem  24101  isvc  24104
  Copyright terms: Public domain W3C validator