MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvci Structured version   Unicode version

Theorem isvci 25139
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isvci.1  |-  G  e. 
AbelOp
isvci.2  |-  dom  G  =  ( X  X.  X )
isvci.3  |-  S :
( CC  X.  X
) --> X
isvci.4  |-  ( x  e.  X  ->  (
1 S x )  =  x )
isvci.5  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
isvci.6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
isvci.7  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
isvci.8  |-  W  = 
<. G ,  S >.
Assertion
Ref Expression
isvci  |-  W  e. 
CVecOLD
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, y, z
Allowed substitution hints:    W( x, y, z)

Proof of Theorem isvci
StepHypRef Expression
1 isvci.8 . 2  |-  W  = 
<. G ,  S >.
2 isvci.1 . . 3  |-  G  e. 
AbelOp
3 isvci.3 . . 3  |-  S :
( CC  X.  X
) --> X
4 isvci.4 . . . . 5  |-  ( x  e.  X  ->  (
1 S x )  =  x )
5 isvci.5 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  X  /\  z  e.  X )  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
653com12 1195 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  X )  ->  (
y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
763expa 1191 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  X
)  ->  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
87ralrimiva 2873 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) ) )
9 isvci.6 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) ) )
10 isvci.7 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( y  x.  z
) S x )  =  ( y S ( z S x ) ) )
119, 10jca 532 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  X )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
12113comr 1199 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
13123expa 1191 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  y  e.  CC )  /\  z  e.  CC )  ->  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
1413ralrimiva 2873 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) )
158, 14jca 532 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
1615ralrimiva 2873 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
174, 16jca 532 . . . 4  |-  ( x  e.  X  ->  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )
1817rgen 2819 . . 3  |-  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) )
19 ablogrpo 24950 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
202, 19ax-mp 5 . . . . 5  |-  G  e. 
GrpOp
21 isvci.2 . . . . 5  |-  dom  G  =  ( X  X.  X )
2220, 21grporn 24878 . . . 4  |-  X  =  ran  G
2322isvc 25138 . . 3  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
242, 3, 18, 23mpbir3an 1173 . 2  |-  <. G ,  S >.  e.  CVecOLD
251, 24eqeltri 2546 1  |-  W  e. 
CVecOLD
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   <.cop 4028    X. cxp 4992   dom cdm 4994   -->wf 5577  (class class class)co 6277   CCcc 9481   1c1 9484    + caddc 9486    x. cmul 9488   GrpOpcgr 24852   AbelOpcablo 24947   CVecOLDcvc 25102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-grpo 24857  df-ablo 24948  df-vc 25103
This theorem is referenced by:  cncvc  25140  hilvc  25743  hhssnv  25844
  Copyright terms: Public domain W3C validator