MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvc Structured version   Unicode version

Theorem isvc 23959
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
isvc.1  |-  X  =  ran  G
Assertion
Ref Expression
isvc  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    x, S, y, z    x, X, z
Allowed substitution hint:    X( y)

Proof of Theorem isvc
StepHypRef Expression
1 vcex 23958 . 2  |-  ( <. G ,  S >.  e. 
CVecOLD  ->  ( G  e.  _V  /\  S  e. 
_V ) )
2 elex 2981 . . . . 5  |-  ( G  e.  AbelOp  ->  G  e.  _V )
32adantr 465 . . . 4  |-  ( ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X )  ->  G  e.  _V )
4 cnex 9363 . . . . . . 7  |-  CC  e.  _V
5 ablogrpo 23771 . . . . . . . 8  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
6 isvc.1 . . . . . . . . 9  |-  X  =  ran  G
7 rnexg 6510 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  ran  G  e. 
_V )
86, 7syl5eqel 2527 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  X  e.  _V )
95, 8syl 16 . . . . . . 7  |-  ( G  e.  AbelOp  ->  X  e.  _V )
10 xpexg 6507 . . . . . . 7  |-  ( ( CC  e.  _V  /\  X  e.  _V )  ->  ( CC  X.  X
)  e.  _V )
114, 9, 10sylancr 663 . . . . . 6  |-  ( G  e.  AbelOp  ->  ( CC  X.  X )  e.  _V )
12 fex 5950 . . . . . 6  |-  ( ( S : ( CC 
X.  X ) --> X  /\  ( CC  X.  X )  e.  _V )  ->  S  e.  _V )
1311, 12sylan2 474 . . . . 5  |-  ( ( S : ( CC 
X.  X ) --> X  /\  G  e.  AbelOp )  ->  S  e.  _V )
1413ancoms 453 . . . 4  |-  ( ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X )  ->  S  e.  _V )
153, 14jca 532 . . 3  |-  ( ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X )  ->  ( G  e. 
_V  /\  S  e.  _V ) )
16153adant3 1008 . 2  |-  ( ( G  e.  AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( ( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) )  -> 
( G  e.  _V  /\  S  e.  _V )
)
176isvclem 23955 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V )  ->  ( <. G ,  S >.  e.  CVecOLD  <->  ( G  e.  AbelOp  /\  S :
( CC  X.  X
) --> X  /\  A. x  e.  X  (
( 1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) ) )
181, 16, 17pm5.21nii 353 1  |-  ( <. G ,  S >.  e. 
CVecOLD  <->  ( G  e. 
AbelOp  /\  S : ( CC  X.  X ) --> X  /\  A. x  e.  X  ( (
1 S x )  =  x  /\  A. y  e.  CC  ( A. z  e.  X  ( y S ( x G z ) )  =  ( ( y S x ) G ( y S z ) )  /\  A. z  e.  CC  (
( ( y  +  z ) S x )  =  ( ( y S x ) G ( z S x ) )  /\  ( ( y  x.  z ) S x )  =  ( y S ( z S x ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972   <.cop 3883    X. cxp 4838   ran crn 4841   -->wf 5414  (class class class)co 6091   CCcc 9280   1c1 9283    + caddc 9285    x. cmul 9287   GrpOpcgr 23673   AbelOpcablo 23768   CVecOLDcvc 23923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-ablo 23769  df-vc 23924
This theorem is referenced by:  isvci  23960
  Copyright terms: Public domain W3C validator