MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Unicode version

Theorem isunit 17433
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1  |-  U  =  (Unit `  R )
unit.2  |-  .1.  =  ( 1r `  R )
unit.3  |-  .||  =  (
||r `  R )
unit.4  |-  S  =  (oppr
`  R )
unit.5  |-  E  =  ( ||r `
 S )
Assertion
Ref Expression
isunit  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) )

Proof of Theorem isunit
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elfvdm 5898 . . . 4  |-  ( X  e.  (Unit `  R
)  ->  R  e.  dom Unit )
2 unit.1 . . . 4  |-  U  =  (Unit `  R )
31, 2eleq2s 2565 . . 3  |-  ( X  e.  U  ->  R  e.  dom Unit )
4 elex 3118 . . 3  |-  ( R  e.  dom Unit  ->  R  e. 
_V )
53, 4syl 16 . 2  |-  ( X  e.  U  ->  R  e.  _V )
6 df-br 4457 . . . 4  |-  ( X 
.||  .1.  <->  <. X ,  .1.  >.  e.  .||  )
7 elfvdm 5898 . . . . . 6  |-  ( <. X ,  .1.  >.  e.  (
||r `  R )  ->  R  e.  dom  ||r )
8 unit.3 . . . . . 6  |-  .||  =  (
||r `  R )
97, 8eleq2s 2565 . . . . 5  |-  ( <. X ,  .1.  >.  e.  .||  ->  R  e.  dom  ||r )
10 elex 3118 . . . . 5  |-  ( R  e.  dom  ||r  ->  R  e. 
_V )
119, 10syl 16 . . . 4  |-  ( <. X ,  .1.  >.  e.  .||  ->  R  e.  _V )
126, 11sylbi 195 . . 3  |-  ( X 
.||  .1.  ->  R  e. 
_V )
1312adantr 465 . 2  |-  ( ( X  .||  .1.  /\  X E  .1.  )  ->  R  e.  _V )
14 fveq2 5872 . . . . . . . . . 10  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
1514, 8syl6eqr 2516 . . . . . . . . 9  |-  ( r  =  R  ->  ( ||r `  r )  =  .||  )
16 fveq2 5872 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
17 unit.4 . . . . . . . . . . . 12  |-  S  =  (oppr
`  R )
1816, 17syl6eqr 2516 . . . . . . . . . . 11  |-  ( r  =  R  ->  (oppr `  r
)  =  S )
1918fveq2d 5876 . . . . . . . . . 10  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 S ) )
20 unit.5 . . . . . . . . . 10  |-  E  =  ( ||r `
 S )
2119, 20syl6eqr 2516 . . . . . . . . 9  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  E )
2215, 21ineq12d 3697 . . . . . . . 8  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  (  .||  i^i  E ) )
2322cnveqd 5188 . . . . . . 7  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( 
.||  i^i  E )
)
24 fveq2 5872 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
25 unit.2 . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
2624, 25syl6eqr 2516 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
2726sneqd 4044 . . . . . . 7  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  {  .1.  } )
2823, 27imaeq12d 5348 . . . . . 6  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( 
.||  i^i  E ) " {  .1.  } ) )
29 df-unit 17418 . . . . . 6  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
30 fvex 5882 . . . . . . . . . 10  |-  ( ||r `  R
)  e.  _V
318, 30eqeltri 2541 . . . . . . . . 9  |-  .||  e.  _V
3231inex1 4597 . . . . . . . 8  |-  (  .||  i^i  E )  e.  _V
3332cnvex 6746 . . . . . . 7  |-  `' ( 
.||  i^i  E )  e.  _V
34 imaexg 6736 . . . . . . 7  |-  ( `' (  .||  i^i  E )  e.  _V  ->  ( `' (  .||  i^i  E
) " {  .1.  } )  e.  _V )
3533, 34ax-mp 5 . . . . . 6  |-  ( `' (  .||  i^i  E )
" {  .1.  }
)  e.  _V
3628, 29, 35fvmpt 5956 . . . . 5  |-  ( R  e.  _V  ->  (Unit `  R )  =  ( `' (  .||  i^i  E
) " {  .1.  } ) )
372, 36syl5eq 2510 . . . 4  |-  ( R  e.  _V  ->  U  =  ( `' ( 
.||  i^i  E ) " {  .1.  } ) )
3837eleq2d 2527 . . 3  |-  ( R  e.  _V  ->  ( X  e.  U  <->  X  e.  ( `' (  .||  i^i  E
) " {  .1.  } ) ) )
39 inss1 3714 . . . . . 6  |-  (  .||  i^i  E )  C_  .||
408reldvdsr 17420 . . . . . 6  |-  Rel  .||
41 relss 5099 . . . . . 6  |-  ( ( 
.||  i^i  E )  C_  .||  ->  ( Rel  .||  ->  Rel  (  .||  i^i  E ) ) )
4239, 40, 41mp2 9 . . . . 5  |-  Rel  (  .|| 
i^i  E )
43 eliniseg2 5386 . . . . 5  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
4442, 43ax-mp 5 . . . 4  |-  ( X  e.  ( `' ( 
.||  i^i  E ) " {  .1.  } )  <-> 
X (  .||  i^i  E
)  .1.  )
45 brin 4505 . . . 4  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4644, 45bitri 249 . . 3  |-  ( X  e.  ( `' ( 
.||  i^i  E ) " {  .1.  } )  <-> 
( X  .||  .1.  /\  X E  .1.  )
)
4738, 46syl6bb 261 . 2  |-  ( R  e.  _V  ->  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) ) )
485, 13, 47pm5.21nii 353 1  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109    i^i cin 3470    C_ wss 3471   {csn 4032   <.cop 4038   class class class wbr 4456   `'ccnv 5007   dom cdm 5008   "cima 5011   Rel wrel 5013   ` cfv 5594   1rcur 17280  opprcoppr 17398   ||rcdsr 17414  Unitcui 17415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fv 5602  df-dvdsr 17417  df-unit 17418
This theorem is referenced by:  1unit  17434  unitcl  17435  opprunit  17437  crngunit  17438  unitmulcl  17440  unitgrp  17443  unitnegcl  17457  unitpropd  17473  isdrng2  17533  subrguss  17571  subrgunit  17574  fidomndrng  18083  invrvald  19305  elrhmunit  27971
  Copyright terms: Public domain W3C validator