MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsup Structured version   Unicode version

Theorem isumsup 13741
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
isumsup.1  |-  Z  =  ( ZZ>= `  M )
isumsup.2  |-  G  =  seq M (  +  ,  F )
isumsup.3  |-  ( ph  ->  M  e.  ZZ )
isumsup.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumsup.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
isumsup.6  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  A )
isumsup.7  |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  ( G `  j )  <_  x )
Assertion
Ref Expression
isumsup  |-  ( ph  -> 
sum_ k  e.  Z  A  =  sup ( ran  G ,  RR ,  <  ) )
Distinct variable groups:    x, j, A    j, k, F, x   
j, M, k, x    ph, j, k    j, Z, k, x    j, G, x
Allowed substitution hints:    ph( x)    A( k)    G( k)

Proof of Theorem isumsup
StepHypRef Expression
1 isumsup.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumsup.3 . 2  |-  ( ph  ->  M  e.  ZZ )
3 isumsup.4 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
4 isumsup.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
54recnd 9611 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
6 isumsup.2 . . 3  |-  G  =  seq M (  +  ,  F )
7 isumsup.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  A )
8 isumsup.7 . . . 4  |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  ( G `  j )  <_  x )
91, 6, 2, 3, 4, 7, 8isumsup2 13740 . . 3  |-  ( ph  ->  G  ~~>  sup ( ran  G ,  RR ,  <  )
)
106, 9syl5eqbrr 4473 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sup ( ran  G ,  RR ,  <  ) )
111, 2, 3, 5, 10isumclim 13654 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  sup ( ran  G ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   class class class wbr 4439   ran crn 4989   ` cfv 5570   supcsup 7892   RRcr 9480   0cc0 9481    + caddc 9484    < clt 9617    <_ cle 9618   ZZcz 10860   ZZ>=cuz 11082    seqcseq 12089    ~~> cli 13389   sum_csu 13590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591
This theorem is referenced by:  prmreclem6  14523  ovoliunlem1  22079  ovoliun2  22083
  Copyright terms: Public domain W3C validator