MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsplit Structured version   Unicode version

Theorem isumsplit 13306
Description: Split off the first  N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumsplit.1  |-  Z  =  ( ZZ>= `  M )
isumsplit.2  |-  W  =  ( ZZ>= `  N )
isumsplit.3  |-  ( ph  ->  N  e.  Z )
isumsplit.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumsplit.6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumsplit  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
Distinct variable groups:    k, F    k, M    ph, k    k, Z   
k, N    k, W
Allowed substitution hint:    A( k)

Proof of Theorem isumsplit
Dummy variables  j  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumsplit.3 . . . 4  |-  ( ph  ->  N  e.  Z )
32, 1syl6eleq 2533 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 10869 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 16 . 2  |-  ( ph  ->  M  e.  ZZ )
6 isumsplit.4 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
7 isumsplit.5 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
8 isumsplit.2 . . 3  |-  W  =  ( ZZ>= `  N )
9 eluzelz 10873 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
103, 9syl 16 . . 3  |-  ( ph  ->  N  e.  ZZ )
11 uzss 10884 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
123, 11syl 16 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
)
1312, 8, 13sstr4g 3400 . . . . . 6  |-  ( ph  ->  W  C_  Z )
1413sselda 3359 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  k  e.  Z )
1514, 6syldan 470 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  =  A )
1614, 7syldan 470 . . . 4  |-  ( (
ph  /\  k  e.  W )  ->  A  e.  CC )
17 isumsplit.6 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
186, 7eqeltrd 2517 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
191, 2, 18iserex 13137 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
2017, 19mpbid 210 . . . 4  |-  ( ph  ->  seq N (  +  ,  F )  e. 
dom 
~~>  )
218, 10, 15, 16, 20isumclim2 13228 . . 3  |-  ( ph  ->  seq N (  +  ,  F )  ~~>  sum_ k  e.  W  A )
22 fzfid 11798 . . . 4  |-  ( ph  ->  ( M ... ( N  -  1 ) )  e.  Fin )
23 elfzuz 11452 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
2423, 1syl6eleqr 2534 . . . . 5  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  Z )
2524, 7sylan2 474 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
2622, 25fsumcl 13213 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M ... ( N  -  1 ) ) A  e.  CC )
2714, 18syldan 470 . . . . 5  |-  ( (
ph  /\  k  e.  W )  ->  ( F `  k )  e.  CC )
288, 10, 27serf 11837 . . . 4  |-  ( ph  ->  seq N (  +  ,  F ) : W --> CC )
2928ffvelrnda 5846 . . 3  |-  ( (
ph  /\  j  e.  W )  ->  (  seq N (  +  ,  F ) `  j
)  e.  CC )
305zred 10750 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
3130ltm1d 10268 . . . . . . . . . . 11  |-  ( ph  ->  ( M  -  1 )  <  M )
32 peano2zm 10691 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
335, 32syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
34 fzn 11469 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
355, 33, 34syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  - 
1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
3631, 35mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( M ... ( M  -  1 ) )  =  (/) )
3736sumeq1d 13181 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  sum_ k  e.  (/)  A )
3837adantr 465 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  sum_ k  e.  (/)  A )
39 sum0 13201 . . . . . . . 8  |-  sum_ k  e.  (/)  A  =  0
4038, 39syl6eq 2491 . . . . . . 7  |-  ( (
ph  /\  j  e.  W )  ->  sum_ k  e.  ( M ... ( M  -  1 ) ) A  =  0 )
4140oveq1d 6109 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  ( sum_ k  e.  ( M ... ( M  - 
1 ) ) A  +  (  seq M
(  +  ,  F
) `  j )
)  =  ( 0  +  (  seq M
(  +  ,  F
) `  j )
) )
4213sselda 3359 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  j  e.  Z )
431, 5, 18serf 11837 . . . . . . . . 9  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
4443ffvelrnda 5846 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
4542, 44syldan 470 . . . . . . 7  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
4645addid2d 9573 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  (
0  +  (  seq M (  +  ,  F ) `  j
) )  =  (  seq M (  +  ,  F ) `  j ) )
4741, 46eqtr2d 2476 . . . . 5  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) )
48 oveq1 6101 . . . . . . . . 9  |-  ( N  =  M  ->  ( N  -  1 )  =  ( M  - 
1 ) )
4948oveq2d 6110 . . . . . . . 8  |-  ( N  =  M  ->  ( M ... ( N  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
5049sumeq1d 13181 . . . . . . 7  |-  ( N  =  M  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  sum_ k  e.  ( M ... ( M  -  1 ) ) A )
51 seqeq1 11812 . . . . . . . 8  |-  ( N  =  M  ->  seq N (  +  ,  F )  =  seq M (  +  ,  F ) )
5251fveq1d 5696 . . . . . . 7  |-  ( N  =  M  ->  (  seq N (  +  ,  F ) `  j
)  =  (  seq M (  +  ,  F ) `  j
) )
5350, 52oveq12d 6112 . . . . . 6  |-  ( N  =  M  ->  ( sum_ k  e.  ( M ... ( N  - 
1 ) ) A  +  (  seq N
(  +  ,  F
) `  j )
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) )
5453eqeq2d 2454 . . . . 5  |-  ( N  =  M  ->  (
(  seq M (  +  ,  F ) `  j )  =  (
sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j
) )  <->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( M  -  1 ) ) A  +  (  seq M (  +  ,  F ) `  j ) ) ) )
5547, 54syl5ibrcom 222 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  =  M  ->  (  seq M (  +  ,  F ) `  j )  =  (
sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j
) ) ) )
56 addcl 9367 . . . . . . . 8  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
5756adantl 466 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  ( k  e.  CC  /\  m  e.  CC ) )  -> 
( k  +  m
)  e.  CC )
58 addass 9372 . . . . . . . 8  |-  ( ( k  e.  CC  /\  m  e.  CC  /\  x  e.  CC )  ->  (
( k  +  m
)  +  x )  =  ( k  +  ( m  +  x
) ) )
5958adantl 466 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  ( k  e.  CC  /\  m  e.  CC  /\  x  e.  CC ) )  -> 
( ( k  +  m )  +  x
)  =  ( k  +  ( m  +  x ) ) )
60 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  j  e.  W )
61 simpll 753 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ph )
6210zcnd 10751 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
63 ax-1cn 9343 . . . . . . . . . . . . 13  |-  1  e.  CC
64 npcan 9622 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
6562, 63, 64sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
6665eqcomd 2448 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( N  -  1 )  +  1 ) )
6761, 66syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  =  ( ( N  - 
1 )  +  1 ) )
6867fveq2d 5698 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ZZ>= `  N )  =  (
ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
698, 68syl5eq 2487 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  W  =  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
7060, 69eleqtrd 2519 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
715adantr 465 . . . . . . . 8  |-  ( (
ph  /\  j  e.  W )  ->  M  e.  ZZ )
72 eluzp1m1 10887 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
7371, 72sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
74 elfzuz 11452 . . . . . . . . 9  |-  ( k  e.  ( M ... j )  ->  k  e.  ( ZZ>= `  M )
)
7574, 1syl6eleqr 2534 . . . . . . . 8  |-  ( k  e.  ( M ... j )  ->  k  e.  Z )
7661, 75, 18syl2an 477 . . . . . . 7  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  ( M ... j ) )  ->  ( F `  k )  e.  CC )
7757, 59, 70, 73, 76seqsplit 11842 . . . . . 6  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  ( N  -  1
) )  +  (  seq ( ( N  -  1 )  +  1 ) (  +  ,  F ) `  j ) ) )
7861, 24, 6syl2an 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  =  A )
7961, 24, 7syl2an 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
8078, 73, 79fsumser 13210 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) A  =  (  seq M (  +  ,  F ) `  ( N  -  1
) ) )
8167seqeq1d 11815 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  seq N (  +  ,  F )  =  seq ( ( N  -  1 )  +  1 ) (  +  ,  F ) )
8281fveq1d 5696 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq N (  +  ,  F ) `  j
)  =  (  seq ( ( N  - 
1 )  +  1 ) (  +  ,  F ) `  j
) )
8380, 82oveq12d 6112 . . . . . 6  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) )  =  ( (  seq M
(  +  ,  F
) `  ( N  -  1 ) )  +  (  seq (
( N  -  1 )  +  1 ) (  +  ,  F
) `  j )
) )
8477, 83eqtr4d 2478 . . . . 5  |-  ( ( ( ph  /\  j  e.  W )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) )
8584ex 434 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  e.  ( ZZ>= `  ( M  +  1
) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) ) )
86 uzp1 10897 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
873, 86syl 16 . . . . 5  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
8887adantr 465 . . . 4  |-  ( (
ph  /\  j  e.  W )  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1
) ) ) )
8955, 85, 88mpjaod 381 . . 3  |-  ( (
ph  /\  j  e.  W )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  (  seq N (  +  ,  F ) `  j ) ) )
908, 10, 21, 26, 17, 29, 89climaddc2 13116 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
911, 5, 6, 7, 90isumclim 13227 1  |-  ( ph  -> 
sum_ k  e.  Z  A  =  ( sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3331   (/)c0 3640   class class class wbr 4295   dom cdm 4843   ` cfv 5421  (class class class)co 6094   CCcc 9283   0cc0 9285   1c1 9286    + caddc 9288    < clt 9421    - cmin 9598   ZZcz 10649   ZZ>=cuz 10864   ...cfz 11440    seqcseq 11809    ~~> cli 12965   sum_csu 13166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-sup 7694  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-fz 11441  df-fzo 11552  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167
This theorem is referenced by:  isum1p  13307  geolim2  13334  mertenslem2  13348  mertens  13349  effsumlt  13398  eirrlem  13489  rpnnen2lem8  13507  prmreclem6  13985  aaliou3lem7  21818  abelthlem7  21906  log2tlbnd  22343  subfaclim  27079  stirlinglem12  29883
  Copyright terms: Public domain W3C validator