MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Unicode version

Theorem isumshft 13415
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1  |-  Z  =  ( ZZ>= `  M )
isumshft.2  |-  W  =  ( ZZ>= `  ( M  +  K ) )
isumshft.3  |-  ( j  =  ( K  +  k )  ->  A  =  B )
isumshft.4  |-  ( ph  ->  K  e.  ZZ )
isumshft.5  |-  ( ph  ->  M  e.  ZZ )
isumshft.6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
Assertion
Ref Expression
isumshft  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    j, k, K    ph, j, k   
j, W, k    B, j    k, Z
Allowed substitution hints:    A( j)    B( k)    M( j, k)    Z( j)

Proof of Theorem isumshft
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2 isumshft.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
31, 2zaddcld 10857 . . . . . . . 8  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
4 isumshft.2 . . . . . . . . . 10  |-  W  =  ( ZZ>= `  ( M  +  K ) )
54eleq2i 2530 . . . . . . . . 9  |-  ( m  e.  W  <->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
62zcnd 10854 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
7 eluzelz 10976 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  ZZ )
87zcnd 10854 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  CC )
98, 4eleq2s 2560 . . . . . . . . . . 11  |-  ( m  e.  W  ->  m  e.  CC )
10 isumshft.1 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
11 fvex 5804 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  e.  _V
1210, 11eqeltri 2536 . . . . . . . . . . . . 13  |-  Z  e. 
_V
1312mptex 6052 . . . . . . . . . . . 12  |-  ( k  e.  Z  |->  B )  e.  _V
1413shftval 12676 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
156, 9, 14syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( ( k  e.  Z  |->  B )  shift  K ) `  m )  =  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) ) )
16 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
17 eqid 2452 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
1817fvmpt2i 5884 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  Z  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
1916, 18syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
20 eluzelz 10976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2120zcnd 10854 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
2221, 10eleq2s 2560 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  CC )
23 addcom 9661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
246, 22, 23syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
25 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  Z  ->  k  e.  Z )
2625, 10syl6eleq 2550 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
27 eluzadd 10995 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2826, 2, 27syl2anr 478 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2924, 28eqeltrd 2540 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
3029, 4syl6eleqr 2551 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
31 isumshft.3 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( K  +  k )  ->  A  =  B )
32 eqid 2452 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  W  |->  A )  =  ( j  e.  W  |->  A )
3331, 32fvmpti 5877 . . . . . . . . . . . . . . . . 17  |-  ( ( K  +  k )  e.  W  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3430, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3519, 34eqtr4d 2496 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  k ) ) )
3635ralrimiva 2827 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
) )
37 nffvmpt1 5802 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  Z  |->  B ) `  n )
3837nfeq1 2628 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)
39 fveq2 5794 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
40 oveq2 6203 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  ( K  +  k )  =  ( K  +  n ) )
4140fveq2d 5798 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4239, 41eqeq12d 2474 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  <->  ( ( k  e.  Z  |->  B ) `
 n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n
) ) ) )
4338, 42rspc 3167 . . . . . . . . . . . . . 14  |-  ( n  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  ->  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) ) )
4436, 43mpan9 469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4544ralrimiva 2827 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
) )
4645adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  A. n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) )
471adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  M  e.  ZZ )
482adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  K  e.  ZZ )
49 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  W )
5049, 4syl6eleq 2550 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
51 eluzsub 10996 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( m  -  K )  e.  (
ZZ>= `  M ) )
5247, 48, 50, 51syl3anc 1219 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  ( ZZ>= `  M
) )
5352, 10syl6eleqr 2551 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  Z )
54 fveq2 5794 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
55 oveq2 6203 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  K )  ->  ( K  +  n )  =  ( K  +  ( m  -  K
) ) )
5655fveq2d 5798 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
5754, 56eqeq12d 2474 . . . . . . . . . . . 12  |-  ( n  =  ( m  -  K )  ->  (
( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  <->  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  (
m  -  K ) ) ) ) )
5857rspccva 3172 . . . . . . . . . . 11  |-  ( ( A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  /\  ( m  -  K )  e.  Z
)  ->  ( (
k  e.  Z  |->  B ) `  ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  ( m  -  K
) ) ) )
5946, 53, 58syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( k  e.  Z  |->  B ) `  (
m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
60 pncan3 9724 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( K  +  ( m  -  K ) )  =  m )
616, 9, 60syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  ( K  +  ( m  -  K ) )  =  m )
6261fveq2d 5798 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) )  =  ( ( j  e.  W  |->  A ) `
 m ) )
6315, 59, 623eqtrrd 2498 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( ( k  e.  Z  |->  B )  shift  K ) `
 m ) )
645, 63sylan2br 476 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 m )  =  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
) )
653, 64seqfeq 11943 . . . . . . 7  |-  ( ph  ->  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  =  seq ( M  +  K ) (  +  ,  ( ( k  e.  Z  |->  B )  shift  K )
) )
6665breq1d 4405 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6713isershft 13254 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
681, 2, 67syl2anc 661 . . . . . 6  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6966, 68bitr4d 256 . . . . 5  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x ) )
7069iotabidv 5505 . . . 4  |-  ( ph  ->  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x ) )
71 df-fv 5529 . . . 4  |-  (  ~~>  `  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) ) )  =  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )
72 df-fv 5529 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  B ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x )
7370, 71, 723eqtr4g 2518 . . 3  |-  ( ph  ->  (  ~~>  `  seq ( M  +  K )
(  +  ,  ( j  e.  W  |->  A ) ) )  =  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
74 eqidd 2453 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( j  e.  W  |->  A ) `  m ) )
75 isumshft.6 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
7675, 32fmptd 5971 . . . . 5  |-  ( ph  ->  ( j  e.  W  |->  A ) : W --> CC )
77 ffvelrn 5945 . . . . 5  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  m  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  m )  e.  CC )
7876, 77sylan 471 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  e.  CC )
794, 3, 74, 78isum 13309 . . 3  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  (  ~~>  `
 seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) ) ) )
80 eqidd 2453 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
8176adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
j  e.  W  |->  A ) : W --> CC )
8230ralrimiva 2827 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( K  +  k
)  e.  W )
8340eleq1d 2521 . . . . . . . 8  |-  ( k  =  n  ->  (
( K  +  k )  e.  W  <->  ( K  +  n )  e.  W
) )
8483rspccva 3172 . . . . . . 7  |-  ( ( A. k  e.  Z  ( K  +  k
)  e.  W  /\  n  e.  Z )  ->  ( K  +  n
)  e.  W )
8582, 84sylan 471 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( K  +  n )  e.  W )
86 ffvelrn 5945 . . . . . 6  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  ( K  +  n )  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  ( K  +  n ) )  e.  CC )
8781, 85, 86syl2anc 661 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  e.  CC )
8844, 87eqeltrd 2540 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  e.  CC )
8910, 1, 80, 88isum 13309 . . 3  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
9073, 79, 893eqtr4d 2503 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n ) )
91 sumfc 13299 . 2  |-  sum_ m  e.  W  ( (
j  e.  W  |->  A ) `  m )  =  sum_ j  e.  W  A
92 sumfc 13299 . 2  |-  sum_ n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  sum_ k  e.  Z  B
9390, 91, 923eqtr3g 2516 1  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   _Vcvv 3072   class class class wbr 4395    |-> cmpt 4453    _I cid 4734   iotacio 5482   -->wf 5517   ` cfv 5521  (class class class)co 6195   CCcc 9386    + caddc 9391    - cmin 9701   ZZcz 10752   ZZ>=cuz 10967    seqcseq 11918    shift cshi 12668    ~~> cli 13075   sum_csu 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-oi 7830  df-card 8215  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-n0 10686  df-z 10753  df-uz 10968  df-rp 11098  df-fz 11550  df-fzo 11661  df-seq 11919  df-exp 11978  df-hash 12216  df-shft 12669  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-clim 13079  df-sum 13277
This theorem is referenced by:  eftlub  13506  pserdv2  22023  logtayl  22233
  Copyright terms: Public domain W3C validator