MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Unicode version

Theorem isumshft 13284
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1  |-  Z  =  ( ZZ>= `  M )
isumshft.2  |-  W  =  ( ZZ>= `  ( M  +  K ) )
isumshft.3  |-  ( j  =  ( K  +  k )  ->  A  =  B )
isumshft.4  |-  ( ph  ->  K  e.  ZZ )
isumshft.5  |-  ( ph  ->  M  e.  ZZ )
isumshft.6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
Assertion
Ref Expression
isumshft  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    j, k, K    ph, j, k   
j, W, k    B, j    k, Z
Allowed substitution hints:    A( j)    B( k)    M( j, k)    Z( j)

Proof of Theorem isumshft
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2 isumshft.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
31, 2zaddcld 10738 . . . . . . . 8  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
4 isumshft.2 . . . . . . . . . 10  |-  W  =  ( ZZ>= `  ( M  +  K ) )
54eleq2i 2497 . . . . . . . . 9  |-  ( m  e.  W  <->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
62zcnd 10735 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
7 eluzelz 10857 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  ZZ )
87zcnd 10735 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  CC )
98, 4eleq2s 2525 . . . . . . . . . . 11  |-  ( m  e.  W  ->  m  e.  CC )
10 isumshft.1 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
11 fvex 5689 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  e.  _V
1210, 11eqeltri 2503 . . . . . . . . . . . . 13  |-  Z  e. 
_V
1312mptex 5935 . . . . . . . . . . . 12  |-  ( k  e.  Z  |->  B )  e.  _V
1413shftval 12546 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
156, 9, 14syl2an 474 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( ( k  e.  Z  |->  B )  shift  K ) `  m )  =  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) ) )
16 simpr 458 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
17 eqid 2433 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
1817fvmpt2i 5768 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  Z  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
1916, 18syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
20 eluzelz 10857 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2120zcnd 10735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
2221, 10eleq2s 2525 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  CC )
23 addcom 9542 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
246, 22, 23syl2an 474 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
25 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  Z  ->  k  e.  Z )
2625, 10syl6eleq 2523 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
27 eluzadd 10876 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2826, 2, 27syl2anr 475 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2924, 28eqeltrd 2507 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
3029, 4syl6eleqr 2524 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
31 isumshft.3 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( K  +  k )  ->  A  =  B )
32 eqid 2433 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  W  |->  A )  =  ( j  e.  W  |->  A )
3331, 32fvmpti 5761 . . . . . . . . . . . . . . . . 17  |-  ( ( K  +  k )  e.  W  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3430, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3519, 34eqtr4d 2468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  k ) ) )
3635ralrimiva 2789 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
) )
37 nffvmpt1 5687 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  Z  |->  B ) `  n )
3837nfeq1 2578 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)
39 fveq2 5679 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
40 oveq2 6088 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  ( K  +  k )  =  ( K  +  n ) )
4140fveq2d 5683 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4239, 41eqeq12d 2447 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  <->  ( ( k  e.  Z  |->  B ) `
 n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n
) ) ) )
4338, 42rspc 3056 . . . . . . . . . . . . . 14  |-  ( n  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  ->  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) ) )
4436, 43mpan9 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4544ralrimiva 2789 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
) )
4645adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  A. n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) )
471adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  M  e.  ZZ )
482adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  K  e.  ZZ )
49 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  W )
5049, 4syl6eleq 2523 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
51 eluzsub 10877 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( m  -  K )  e.  (
ZZ>= `  M ) )
5247, 48, 50, 51syl3anc 1211 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  ( ZZ>= `  M
) )
5352, 10syl6eleqr 2524 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  Z )
54 fveq2 5679 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
55 oveq2 6088 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  K )  ->  ( K  +  n )  =  ( K  +  ( m  -  K
) ) )
5655fveq2d 5683 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
5754, 56eqeq12d 2447 . . . . . . . . . . . 12  |-  ( n  =  ( m  -  K )  ->  (
( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  <->  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  (
m  -  K ) ) ) ) )
5857rspccva 3061 . . . . . . . . . . 11  |-  ( ( A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  /\  ( m  -  K )  e.  Z
)  ->  ( (
k  e.  Z  |->  B ) `  ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  ( m  -  K
) ) ) )
5946, 53, 58syl2anc 654 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( k  e.  Z  |->  B ) `  (
m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
60 pncan3 9605 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( K  +  ( m  -  K ) )  =  m )
616, 9, 60syl2an 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  ( K  +  ( m  -  K ) )  =  m )
6261fveq2d 5683 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) )  =  ( ( j  e.  W  |->  A ) `
 m ) )
6315, 59, 623eqtrrd 2470 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( ( k  e.  Z  |->  B )  shift  K ) `
 m ) )
645, 63sylan2br 473 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 m )  =  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
) )
653, 64seqfeq 11814 . . . . . . 7  |-  ( ph  ->  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  =  seq ( M  +  K ) (  +  ,  ( ( k  e.  Z  |->  B )  shift  K )
) )
6665breq1d 4290 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6713isershft 13124 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
681, 2, 67syl2anc 654 . . . . . 6  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6966, 68bitr4d 256 . . . . 5  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x ) )
7069iotabidv 5390 . . . 4  |-  ( ph  ->  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x ) )
71 df-fv 5414 . . . 4  |-  (  ~~>  `  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) ) )  =  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )
72 df-fv 5414 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  B ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x )
7370, 71, 723eqtr4g 2490 . . 3  |-  ( ph  ->  (  ~~>  `  seq ( M  +  K )
(  +  ,  ( j  e.  W  |->  A ) ) )  =  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
74 eqidd 2434 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( j  e.  W  |->  A ) `  m ) )
75 isumshft.6 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
7675, 32fmptd 5855 . . . . 5  |-  ( ph  ->  ( j  e.  W  |->  A ) : W --> CC )
77 ffvelrn 5829 . . . . 5  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  m  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  m )  e.  CC )
7876, 77sylan 468 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  e.  CC )
794, 3, 74, 78isum 13179 . . 3  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  (  ~~>  `
 seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) ) ) )
80 eqidd 2434 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
8176adantr 462 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
j  e.  W  |->  A ) : W --> CC )
8230ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( K  +  k
)  e.  W )
8340eleq1d 2499 . . . . . . . 8  |-  ( k  =  n  ->  (
( K  +  k )  e.  W  <->  ( K  +  n )  e.  W
) )
8483rspccva 3061 . . . . . . 7  |-  ( ( A. k  e.  Z  ( K  +  k
)  e.  W  /\  n  e.  Z )  ->  ( K  +  n
)  e.  W )
8582, 84sylan 468 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( K  +  n )  e.  W )
86 ffvelrn 5829 . . . . . 6  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  ( K  +  n )  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  ( K  +  n ) )  e.  CC )
8781, 85, 86syl2anc 654 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  e.  CC )
8844, 87eqeltrd 2507 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  e.  CC )
8910, 1, 80, 88isum 13179 . . 3  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
9073, 79, 893eqtr4d 2475 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n ) )
91 sumfc 13169 . 2  |-  sum_ m  e.  W  ( (
j  e.  W  |->  A ) `  m )  =  sum_ j  e.  W  A
92 sumfc 13169 . 2  |-  sum_ n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  sum_ k  e.  Z  B
9390, 91, 923eqtr3g 2488 1  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962   class class class wbr 4280    e. cmpt 4338    _I cid 4618   iotacio 5367   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267    + caddc 9272    - cmin 9582   ZZcz 10633   ZZ>=cuz 10848    seqcseq 11789    shift cshi 12538    ~~> cli 12945   sum_csu 13146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-oi 7712  df-card 8097  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-n0 10567  df-z 10634  df-uz 10849  df-rp 10979  df-fz 11424  df-fzo 11532  df-seq 11790  df-exp 11849  df-hash 12087  df-shft 12539  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-sum 13147
This theorem is referenced by:  eftlub  13375  pserdv2  21779  logtayl  21989
  Copyright terms: Public domain W3C validator