MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Unicode version

Theorem isumltss 13616
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1  |-  Z  =  ( ZZ>= `  M )
isumltss.2  |-  ( ph  ->  M  e.  ZZ )
isumltss.3  |-  ( ph  ->  A  e.  Fin )
isumltss.4  |-  ( ph  ->  A  C_  Z )
isumltss.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumltss.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR+ )
isumltss.7  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumltss  |-  ( ph  -> 
sum_ k  e.  A  B  <  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumltss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 isumltss.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
32uzinf 12039 . . . . 5  |-  ( M  e.  ZZ  ->  -.  Z  e.  Fin )
41, 3syl 16 . . . 4  |-  ( ph  ->  -.  Z  e.  Fin )
5 ssdif0 3885 . . . . 5  |-  ( Z 
C_  A  <->  ( Z  \  A )  =  (/) )
6 isumltss.4 . . . . . 6  |-  ( ph  ->  A  C_  Z )
7 eqss 3519 . . . . . . 7  |-  ( A  =  Z  <->  ( A  C_  Z  /\  Z  C_  A ) )
8 isumltss.3 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
9 eleq1 2539 . . . . . . . 8  |-  ( A  =  Z  ->  ( A  e.  Fin  <->  Z  e.  Fin ) )
108, 9syl5ibcom 220 . . . . . . 7  |-  ( ph  ->  ( A  =  Z  ->  Z  e.  Fin ) )
117, 10syl5bir 218 . . . . . 6  |-  ( ph  ->  ( ( A  C_  Z  /\  Z  C_  A
)  ->  Z  e.  Fin ) )
126, 11mpand 675 . . . . 5  |-  ( ph  ->  ( Z  C_  A  ->  Z  e.  Fin )
)
135, 12syl5bir 218 . . . 4  |-  ( ph  ->  ( ( Z  \  A )  =  (/)  ->  Z  e.  Fin )
)
144, 13mtod 177 . . 3  |-  ( ph  ->  -.  ( Z  \  A )  =  (/) )
15 neq0 3795 . . 3  |-  ( -.  ( Z  \  A
)  =  (/)  <->  E. x  x  e.  ( Z  \  A ) )
1614, 15sylib 196 . 2  |-  ( ph  ->  E. x  x  e.  ( Z  \  A
) )
178adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  A  e.  Fin )
186adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  A  C_  Z
)
1918sselda 3504 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  A )  ->  k  e.  Z )
20 isumltss.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR+ )
2120adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  RR+ )
2221rpred 11252 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  RR )
2319, 22syldan 470 . . . 4  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  A )  ->  B  e.  RR )
2417, 23fsumrecl 13512 . . 3  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  e.  RR )
25 snfi 7593 . . . . 5  |-  { x }  e.  Fin
26 unfi 7783 . . . . 5  |-  ( ( A  e.  Fin  /\  { x }  e.  Fin )  ->  ( A  u.  { x } )  e. 
Fin )
2717, 25, 26sylancl 662 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } )  e.  Fin )
28 eldifi 3626 . . . . . . . . 9  |-  ( x  e.  ( Z  \  A )  ->  x  e.  Z )
2928snssd 4172 . . . . . . . 8  |-  ( x  e.  ( Z  \  A )  ->  { x }  C_  Z )
306, 29anim12i 566 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  C_  Z  /\  { x }  C_  Z ) )
31 unss 3678 . . . . . . 7  |-  ( ( A  C_  Z  /\  { x }  C_  Z
)  <->  ( A  u.  { x } )  C_  Z )
3230, 31sylib 196 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } ) 
C_  Z )
3332sselda 3504 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  k  e.  Z
)
3433, 22syldan 470 . . . 4  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  B  e.  RR )
3527, 34fsumrecl 13512 . . 3  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  e.  RR )
361adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  M  e.  ZZ )
37 isumltss.5 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
3837adantlr 714 . . . 4  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  ( F `  k )  =  B )
39 isumltss.7 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4039adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
412, 36, 38, 22, 40isumrecl 13536 . . 3  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  Z  B  e.  RR )
4225a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  e.  Fin )
43 vex 3116 . . . . . . . 8  |-  x  e. 
_V
4443snnz 4145 . . . . . . 7  |-  { x }  =/=  (/)
4544a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  =/=  (/) )
4629adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  { x }  C_  Z )
4746sselda 3504 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  { x } )  ->  k  e.  Z
)
4847, 21syldan 470 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  { x } )  ->  B  e.  RR+ )
4942, 45, 48fsumrpcl 13515 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e. 
{ x } B  e.  RR+ )
5024, 49ltaddrpd 11281 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  ( sum_ k  e.  A  B  +  sum_ k  e.  {
x } B ) )
51 eldifn 3627 . . . . . . 7  |-  ( x  e.  ( Z  \  A )  ->  -.  x  e.  A )
5251adantl 466 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  -.  x  e.  A )
53 disjsn 4088 . . . . . 6  |-  ( ( A  i^i  { x } )  =  (/)  <->  -.  x  e.  A )
5452, 53sylibr 212 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  i^i  { x } )  =  (/) )
55 eqidd 2468 . . . . 5  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  ( A  u.  { x } )  =  ( A  u.  { x } ) )
5621rpcnd 11254 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  B  e.  CC )
5733, 56syldan 470 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  ( A  u.  {
x } ) )  ->  B  e.  CC )
5854, 55, 27, 57fsumsplit 13518 . . . 4  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  =  ( sum_ k  e.  A  B  +  sum_ k  e.  { x } B ) )
5950, 58breqtrrd 4473 . . 3  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  sum_ k  e.  ( A  u.  { x } ) B )
6021rpge0d 11256 . . . 4  |-  ( ( ( ph  /\  x  e.  ( Z  \  A
) )  /\  k  e.  Z )  ->  0  <_  B )
612, 36, 27, 32, 38, 22, 60, 40isumless 13613 . . 3  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  ( A  u.  {
x } ) B  <_  sum_ k  e.  Z  B )
6224, 35, 41, 59, 61ltletrd 9737 . 2  |-  ( (
ph  /\  x  e.  ( Z  \  A ) )  ->  sum_ k  e.  A  B  <  sum_ k  e.  Z  B
)
6316, 62exlimddv 1702 1  |-  ( ph  -> 
sum_ k  e.  A  B  <  sum_ k  e.  Z  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   dom cdm 4999   ` cfv 5586  (class class class)co 6282   Fincfn 7513   CCcc 9486   RRcr 9487    + caddc 9491    < clt 9624   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216    seqcseq 12070    ~~> cli 13263   sum_csu 13464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-rlim 13268  df-sum 13465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator