MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumless Structured version   Unicode version

Theorem isumless 13427
Description: A finite sum of nonnegative numbers is less or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumless.1  |-  Z  =  ( ZZ>= `  M )
isumless.2  |-  ( ph  ->  M  e.  ZZ )
isumless.3  |-  ( ph  ->  A  e.  Fin )
isumless.4  |-  ( ph  ->  A  C_  Z )
isumless.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
isumless.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumless.7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
isumless.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumless  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z
Allowed substitution hint:    B( k)

Proof of Theorem isumless
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 isumless.4 . . 3  |-  ( ph  ->  A  C_  Z )
21sselda 3465 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  Z )
3 isumless.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
43recnd 9524 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
52, 4syldan 470 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
65ralrimiva 2830 . . 3  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
7 isumless.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
87eqimssi 3519 . . . . 5  |-  Z  C_  ( ZZ>= `  M )
98orci 390 . . . 4  |-  ( Z 
C_  ( ZZ>= `  M
)  \/  Z  e. 
Fin )
109a1i 11 . . 3  |-  ( ph  ->  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)
11 sumss2 13322 . . 3  |-  ( ( ( A  C_  Z  /\  A. k  e.  A  B  e.  CC )  /\  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)  ->  sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
121, 6, 10, 11syl21anc 1218 . 2  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 ) )
13 isumless.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
14 eleq1 2526 . . . . . . 7  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
15 fveq2 5800 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
1614, 15ifbieq1d 3921 . . . . . 6  |-  ( j  =  k  ->  if ( j  e.  A ,  ( F `  j ) ,  0 )  =  if ( k  e.  A , 
( F `  k
) ,  0 ) )
17 eqid 2454 . . . . . 6  |-  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )  =  ( j  e.  Z  |->  if ( j  e.  A , 
( F `  j
) ,  0 ) )
18 fvex 5810 . . . . . . 7  |-  ( F `
 k )  e. 
_V
19 c0ex 9492 . . . . . . 7  |-  0  e.  _V
2018, 19ifex 3967 . . . . . 6  |-  if ( k  e.  A , 
( F `  k
) ,  0 )  e.  _V
2116, 17, 20fvmpt 5884 . . . . 5  |-  ( k  e.  Z  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
2221adantl 466 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( F `  k ) ,  0 ) )
23 isumless.5 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
2423ifeq1d 3916 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  ( F `  k ) ,  0 )  =  if ( k  e.  A ,  B ,  0 ) )
2522, 24eqtrd 2495 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  if ( j  e.  A ,  ( F `
 j ) ,  0 ) ) `  k )  =  if ( k  e.  A ,  B ,  0 ) )
26 0re 9498 . . . 4  |-  0  e.  RR
27 ifcl 3940 . . . 4  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( k  e.  A ,  B , 
0 )  e.  RR )
283, 26, 27sylancl 662 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  e.  RR )
29 isumless.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  B )
30 leid 9582 . . . . 5  |-  ( B  e.  RR  ->  B  <_  B )
31 breq1 4404 . . . . . 6  |-  ( B  =  if ( k  e.  A ,  B ,  0 )  -> 
( B  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
32 breq1 4404 . . . . . 6  |-  ( 0  =  if ( k  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  if ( k  e.  A ,  B ,  0 )  <_  B ) )
3331, 32ifboth 3934 . . . . 5  |-  ( ( B  <_  B  /\  0  <_  B )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
3430, 33sylan 471 . . . 4  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
353, 29, 34syl2anc 661 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  B ,  0 )  <_  B )
36 isumless.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
377, 13, 36, 1, 25, 5fsumcvg3 13325 . . 3  |-  ( ph  ->  seq M (  +  ,  ( j  e.  Z  |->  if ( j  e.  A ,  ( F `  j ) ,  0 ) ) )  e.  dom  ~~>  )
38 isumless.8 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
397, 13, 25, 28, 23, 3, 35, 37, 38isumle 13426 . 2  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  A ,  B ,  0 )  <_  sum_ k  e.  Z  B )
4012, 39eqbrtrd 4421 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799    C_ wss 3437   ifcif 3900   class class class wbr 4401    |-> cmpt 4459   dom cdm 4949   ` cfv 5527   Fincfn 7421   CCcc 9392   RRcr 9393   0cc0 9394    + caddc 9397    <_ cle 9531   ZZcz 10758   ZZ>=cuz 10973    seqcseq 11924    ~~> cli 13081   sum_csu 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-pm 7328  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-fz 11556  df-fzo 11667  df-fl 11760  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-rlim 13086  df-sum 13283
This theorem is referenced by:  isumltss  13430  climcnds  13433  harmonic  13440  mertenslem1  13463  prmreclem5  14100  ovoliunlem1  21118  ovoliun2  21122  esumpcvgval  26673  eulerpartlems  26888  geomcau  28804
  Copyright terms: Public domain W3C validator