MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil2 Structured version   Visualization version   Unicode version

Theorem isufil2 20923
Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isufil2  |-  ( F  e.  ( UFil `  X
)  <->  ( F  e.  ( Fil `  X
)  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) ) )
Distinct variable groups:    f, F    f, X

Proof of Theorem isufil2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 20919 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
2 ufilmax 20922 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
)  /\  F  C_  f
)  ->  F  =  f )
323expia 1210 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
) )  ->  ( F  C_  f  ->  F  =  f ) )
43ralrimiva 2802 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )
51, 4jca 535 . 2  |-  ( F  e.  ( UFil `  X
)  ->  ( F  e.  ( Fil `  X
)  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) ) )
6 simpl 459 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X ) ( F 
C_  f  ->  F  =  f ) )  ->  F  e.  ( Fil `  X ) )
7 selpw 3958 . . . . 5  |-  ( x  e.  ~P X  <->  x  C_  X
)
8 simpll 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  F  e.  ( Fil `  X ) )
9 snex 4641 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
10 unexg 6592 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ( Fil `  X )  /\  {
x }  e.  _V )  ->  ( F  u.  { x } )  e. 
_V )
118, 9, 10sylancl 668 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  u.  {
x } )  e. 
_V )
12 ssfii 7933 . . . . . . . . . . . . . . 15  |-  ( ( F  u.  { x } )  e.  _V  ->  ( F  u.  {
x } )  C_  ( fi `  ( F  u.  { x }
) ) )
1311, 12syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  u.  {
x } )  C_  ( fi `  ( F  u.  { x }
) ) )
14 filsspw 20866 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
1514ad2antrr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  F  C_  ~P X )
167biimpri 210 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  X  ->  x  e.  ~P X )
1716ad2antlr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  x  e.  ~P X
)
1817snssd 4117 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  { x }  C_  ~P X )
1915, 18unssd 3610 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  u.  {
x } )  C_  ~P X )
20 ssun2 3598 . . . . . . . . . . . . . . . . . 18  |-  { x }  C_  ( F  u.  { x } )
21 vex 3048 . . . . . . . . . . . . . . . . . . 19  |-  x  e. 
_V
2221snnz 4090 . . . . . . . . . . . . . . . . . 18  |-  { x }  =/=  (/)
23 ssn0 3767 . . . . . . . . . . . . . . . . . 18  |-  ( ( { x }  C_  ( F  u.  { x } )  /\  {
x }  =/=  (/) )  -> 
( F  u.  {
x } )  =/=  (/) )
2420, 22, 23mp2an 678 . . . . . . . . . . . . . . . . 17  |-  ( F  u.  { x }
)  =/=  (/)
2524a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  u.  {
x } )  =/=  (/) )
26 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  A. y  e.  F  ( y  i^i  x
)  =/=  (/) )
27 ineq2 3628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  x  ->  (
y  i^i  f )  =  ( y  i^i  x ) )
2827neeq1d 2683 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  x  ->  (
( y  i^i  f
)  =/=  (/)  <->  ( y  i^i  x )  =/=  (/) ) )
2921, 28ralsn 4010 . . . . . . . . . . . . . . . . . . 19  |-  ( A. f  e.  { x }  ( y  i^i  f )  =/=  (/)  <->  ( y  i^i  x )  =/=  (/) )
3029ralbii 2819 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  F  A. f  e.  { x }  ( y  i^i  f )  =/=  (/)  <->  A. y  e.  F  ( y  i^i  x )  =/=  (/) )
3126, 30sylibr 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  A. y  e.  F  A. f  e.  { x }  ( y  i^i  f )  =/=  (/) )
32 filfbas 20863 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
3332ad2antrr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  F  e.  ( fBas `  X ) )
34 simplr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  x  C_  X )
35 inss2 3653 . . . . . . . . . . . . . . . . . . . 20  |-  ( X  i^i  x )  C_  x
36 filtop 20870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
3736adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e.  ( Fil `  X )  /\  x  C_  X )  ->  X  e.  F )
38 ineq1 3627 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  X  ->  (
y  i^i  x )  =  ( X  i^i  x ) )
3938neeq1d 2683 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  X  ->  (
( y  i^i  x
)  =/=  (/)  <->  ( X  i^i  x )  =/=  (/) ) )
4039rspcva 3148 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( X  e.  F  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  ( X  i^i  x )  =/=  (/) )
4137, 40sylan 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( X  i^i  x
)  =/=  (/) )
42 ssn0 3767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  i^i  x
)  C_  x  /\  ( X  i^i  x
)  =/=  (/) )  ->  x  =/=  (/) )
4335, 41, 42sylancr 669 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  x  =/=  (/) )
4436ad2antrr 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  X  e.  F )
45 snfbas 20881 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  C_  X  /\  x  =/=  (/)  /\  X  e.  F )  ->  { x }  e.  ( fBas `  X ) )
4634, 43, 44, 45syl3anc 1268 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  { x }  e.  ( fBas `  X )
)
47 fbunfip 20884 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  X )  /\  {
x }  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  { x } ) )  <->  A. y  e.  F  A. f  e.  { x }  (
y  i^i  f )  =/=  (/) ) )
4833, 46, 47syl2anc 667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( -.  (/)  e.  ( fi `  ( F  u.  { x }
) )  <->  A. y  e.  F  A. f  e.  { x }  (
y  i^i  f )  =/=  (/) ) )
4931, 48mpbird 236 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  -.  (/)  e.  ( fi
`  ( F  u.  { x } ) ) )
50 fsubbas 20882 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  F  ->  (
( fi `  ( F  u.  { x } ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  { x }
)  C_  ~P X  /\  ( F  u.  {
x } )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  { x }
) ) ) ) )
5144, 50syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( ( fi `  ( F  u.  { x } ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  { x }
)  C_  ~P X  /\  ( F  u.  {
x } )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  { x }
) ) ) ) )
5219, 25, 49, 51mpbir3and 1191 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( fi `  ( F  u.  { x } ) )  e.  ( fBas `  X
) )
53 ssfg 20887 . . . . . . . . . . . . . . 15  |-  ( ( fi `  ( F  u.  { x }
) )  e.  (
fBas `  X )  ->  ( fi `  ( F  u.  { x } ) )  C_  ( X filGen ( fi `  ( F  u.  { x } ) ) ) )
5452, 53syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( fi `  ( F  u.  { x } ) )  C_  ( X filGen ( fi `  ( F  u.  { x } ) ) ) )
5513, 54sstrd 3442 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  u.  {
x } )  C_  ( X filGen ( fi `  ( F  u.  { x } ) ) ) )
5655unssad 3611 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  F  C_  ( X filGen ( fi `  ( F  u.  { x }
) ) ) )
57 fgcl 20893 . . . . . . . . . . . . 13  |-  ( ( fi `  ( F  u.  { x }
) )  e.  (
fBas `  X )  ->  ( X filGen ( fi
`  ( F  u.  { x } ) ) )  e.  ( Fil `  X ) )
58 sseq2 3454 . . . . . . . . . . . . . . 15  |-  ( f  =  ( X filGen ( fi `  ( F  u.  { x }
) ) )  -> 
( F  C_  f  <->  F 
C_  ( X filGen ( fi `  ( F  u.  { x }
) ) ) ) )
59 eqeq2 2462 . . . . . . . . . . . . . . 15  |-  ( f  =  ( X filGen ( fi `  ( F  u.  { x }
) ) )  -> 
( F  =  f  <-> 
F  =  ( X
filGen ( fi `  ( F  u.  { x } ) ) ) ) )
6058, 59imbi12d 322 . . . . . . . . . . . . . 14  |-  ( f  =  ( X filGen ( fi `  ( F  u.  { x }
) ) )  -> 
( ( F  C_  f  ->  F  =  f )  <->  ( F  C_  ( X filGen ( fi `  ( F  u.  { x } ) ) )  ->  F  =  ( X filGen ( fi `  ( F  u.  { x } ) ) ) ) ) )
6160rspcv 3146 . . . . . . . . . . . . 13  |-  ( ( X filGen ( fi `  ( F  u.  { x } ) ) )  e.  ( Fil `  X
)  ->  ( A. f  e.  ( Fil `  X ) ( F 
C_  f  ->  F  =  f )  -> 
( F  C_  ( X filGen ( fi `  ( F  u.  { x } ) ) )  ->  F  =  ( X filGen ( fi `  ( F  u.  { x } ) ) ) ) ) )
6252, 57, 613syl 18 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f )  ->  ( F  C_  ( X filGen ( fi
`  ( F  u.  { x } ) ) )  ->  F  =  ( X filGen ( fi `  ( F  u.  { x } ) ) ) ) ) )
6356, 62mpid 42 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f )  ->  F  =  ( X filGen ( fi `  ( F  u.  { x } ) ) ) ) )
64 ssnid 3997 . . . . . . . . . . . . . . 15  |-  x  e. 
{ x }
6520, 64sselii 3429 . . . . . . . . . . . . . 14  |-  x  e.  ( F  u.  {
x } )
6665a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  x  e.  ( F  u.  { x } ) )
6755, 66sseldd 3433 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  ->  x  e.  ( X filGen ( fi `  ( F  u.  { x } ) ) ) )
68 eleq2 2518 . . . . . . . . . . . 12  |-  ( F  =  ( X filGen ( fi `  ( F  u.  { x }
) ) )  -> 
( x  e.  F  <->  x  e.  ( X filGen ( fi `  ( F  u.  { x }
) ) ) ) )
6967, 68syl5ibrcom 226 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( F  =  ( X filGen ( fi `  ( F  u.  { x } ) ) )  ->  x  e.  F
) )
7063, 69syld 45 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. y  e.  F  ( y  i^i  x )  =/=  (/) )  -> 
( A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f )  ->  x  e.  F ) )
7170impancom 442 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  C_  X
)  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  ->  ( A. y  e.  F  ( y  i^i  x
)  =/=  (/)  ->  x  e.  F ) )
7271an32s 813 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  C_  X )  ->  ( A. y  e.  F  ( y  i^i  x
)  =/=  (/)  ->  x  e.  F ) )
7372con3d 139 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  C_  X )  ->  ( -.  x  e.  F  ->  -.  A. y  e.  F  ( y  i^i  x )  =/=  (/) ) )
74 rexnal 2836 . . . . . . . . 9  |-  ( E. y  e.  F  -.  ( y  i^i  x
)  =/=  (/)  <->  -.  A. y  e.  F  ( y  i^i  x )  =/=  (/) )
75 nne 2628 . . . . . . . . . . 11  |-  ( -.  ( y  i^i  x
)  =/=  (/)  <->  ( y  i^i  x )  =  (/) )
76 filelss 20867 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  y  C_  X )
77 reldisj 3808 . . . . . . . . . . . . 13  |-  ( y 
C_  X  ->  (
( y  i^i  x
)  =  (/)  <->  y  C_  ( X  \  x
) ) )
7876, 77syl 17 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  (
( y  i^i  x
)  =  (/)  <->  y  C_  ( X  \  x
) ) )
79 difss 3560 . . . . . . . . . . . . . 14  |-  ( X 
\  x )  C_  X
80 filss 20868 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ( Fil `  X )  /\  (
y  e.  F  /\  ( X  \  x
)  C_  X  /\  y  C_  ( X  \  x ) ) )  ->  ( X  \  x )  e.  F
)
81803exp2 1227 . . . . . . . . . . . . . 14  |-  ( F  e.  ( Fil `  X
)  ->  ( y  e.  F  ->  ( ( X  \  x ) 
C_  X  ->  (
y  C_  ( X  \  x )  ->  ( X  \  x )  e.  F ) ) ) )
8279, 81mpii 44 . . . . . . . . . . . . 13  |-  ( F  e.  ( Fil `  X
)  ->  ( y  e.  F  ->  ( y 
C_  ( X  \  x )  ->  ( X  \  x )  e.  F ) ) )
8382imp 431 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  (
y  C_  ( X  \  x )  ->  ( X  \  x )  e.  F ) )
8478, 83sylbid 219 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  (
( y  i^i  x
)  =  (/)  ->  ( X  \  x )  e.  F ) )
8575, 84syl5bi 221 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  ( -.  ( y  i^i  x
)  =/=  (/)  ->  ( X  \  x )  e.  F ) )
8685rexlimdva 2879 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( E. y  e.  F  -.  ( y  i^i  x
)  =/=  (/)  ->  ( X  \  x )  e.  F ) )
8774, 86syl5bir 222 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( -.  A. y  e.  F  ( y  i^i  x )  =/=  (/)  ->  ( X  \  x )  e.  F
) )
8887ad2antrr 732 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  C_  X )  ->  ( -.  A. y  e.  F  ( y  i^i  x
)  =/=  (/)  ->  ( X  \  x )  e.  F ) )
8973, 88syld 45 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  C_  X )  ->  ( -.  x  e.  F  ->  ( X  \  x
)  e.  F ) )
9089orrd 380 . . . . 5  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  C_  X )  ->  (
x  e.  F  \/  ( X  \  x
)  e.  F ) )
917, 90sylan2b 478 . . . 4  |-  ( ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) )  /\  x  e.  ~P X )  -> 
( x  e.  F  \/  ( X  \  x
)  e.  F ) )
9291ralrimiva 2802 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X ) ( F 
C_  f  ->  F  =  f ) )  ->  A. x  e.  ~P  X ( x  e.  F  \/  ( X 
\  x )  e.  F ) )
93 isufil 20918 . . 3  |-  ( F  e.  ( UFil `  X
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  ~P  X ( x  e.  F  \/  ( X  \  x )  e.  F ) ) )
946, 92, 93sylanbrc 670 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A. f  e.  ( Fil `  X ) ( F 
C_  f  ->  F  =  f ) )  ->  F  e.  (
UFil `  X )
)
955, 94impbii 191 1  |-  ( F  e.  ( UFil `  X
)  <->  ( F  e.  ( Fil `  X
)  /\  A. f  e.  ( Fil `  X
) ( F  C_  f  ->  F  =  f ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   {csn 3968   ` cfv 5582  (class class class)co 6290   ficfi 7924   fBascfbas 18958   filGencfg 18959   Filcfil 20860   UFilcufil 20914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-fin 7573  df-fi 7925  df-fbas 18967  df-fg 18968  df-fil 20861  df-ufil 20916
This theorem is referenced by:  filssufilg  20926  fmufil  20974
  Copyright terms: Public domain W3C validator