MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isucn2 Unicode version

Theorem isucn2 18262
Description: The predicate " F is a uniformly continuous function from uniform space  U to uniform space  V." , expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018.)
Hypotheses
Ref Expression
isucn2.u  |-  U  =  ( ( X  X.  X ) filGen R )
isucn2.v  |-  V  =  ( ( Y  X.  Y ) filGen S )
isucn2.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
isucn2.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
isucn2.3  |-  ( ph  ->  R  e.  ( fBas `  ( X  X.  X
) ) )
isucn2.4  |-  ( ph  ->  S  e.  ( fBas `  ( Y  X.  Y
) ) )
Assertion
Ref Expression
isucn2  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) s ( F `
 y ) ) ) ) )
Distinct variable groups:    s, r, x, y, F    R, r, x, y    S, s, x, y    U, r, s, x, y    V, s, x    X, r, s, x, y    Y, s, x, y    ph, r,
s, x, y
Allowed substitution hints:    R( s)    S( r)    V( y, r)    Y( r)

Proof of Theorem isucn2
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isucn2.1 . . 3  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
2 isucn2.2 . . 3  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
3 isucn 18261 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) ) ) )
41, 2, 3syl2anc 643 . 2  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) ) ) )
5 isucn2.4 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  ( fBas `  ( Y  X.  Y
) ) )
6 ssfg 17857 . . . . . . . . . . . 12  |-  ( S  e.  ( fBas `  ( Y  X.  Y ) )  ->  S  C_  (
( Y  X.  Y
) filGen S ) )
75, 6syl 16 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  ( ( Y  X.  Y ) filGen S ) )
8 isucn2.v . . . . . . . . . . 11  |-  V  =  ( ( Y  X.  Y ) filGen S )
97, 8syl6sseqr 3355 . . . . . . . . . 10  |-  ( ph  ->  S  C_  V )
109adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> Y )  ->  S  C_  V )
1110adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) )  ->  S  C_  V
)
1211sselda 3308 . . . . . . 7  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  /\  s  e.  S )  ->  s  e.  V )
13 simplr 732 . . . . . . 7  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  /\  s  e.  S )  ->  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )
14 breq 4174 . . . . . . . . . . . 12  |-  ( v  =  s  ->  (
( F `  x
) v ( F `
 y )  <->  ( F `  x ) s ( F `  y ) ) )
1514imbi2d 308 . . . . . . . . . . 11  |-  ( v  =  s  ->  (
( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  ( x u y  ->  ( F `  x ) s ( F `  y ) ) ) )
1615ralbidv 2686 . . . . . . . . . 10  |-  ( v  =  s  ->  ( A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) ) )
1716rexralbidv 2710 . . . . . . . . 9  |-  ( v  =  s  ->  ( E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) ) )
1817rspcv 3008 . . . . . . . 8  |-  ( s  e.  V  ->  ( A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
1918imp 419 . . . . . . 7  |-  ( ( s  e.  V  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) )
2012, 13, 19syl2anc 643 . . . . . 6  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  /\  s  e.  S )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) )
21 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  U )
22 isucn2.u . . . . . . . . . . . 12  |-  U  =  ( ( X  X.  X ) filGen R )
2321, 22syl6eleq 2494 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  ( ( X  X.  X ) filGen R ) )
24 isucn2.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  ( fBas `  ( X  X.  X
) ) )
25 elfg 17856 . . . . . . . . . . . . . 14  |-  ( R  e.  ( fBas `  ( X  X.  X ) )  ->  ( u  e.  ( ( X  X.  X ) filGen R )  <-> 
( u  C_  ( X  X.  X )  /\  E. r  e.  R  r 
C_  u ) ) )
2624, 25syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( ( X  X.  X
) filGen R )  <->  ( u  C_  ( X  X.  X
)  /\  E. r  e.  R  r  C_  u ) ) )
2726biimpa 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( ( X  X.  X ) filGen R ) )  ->  ( u  C_  ( X  X.  X
)  /\  E. r  e.  R  r  C_  u ) )
2827simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( X  X.  X ) filGen R ) )  ->  E. r  e.  R  r  C_  u )
2923, 28syldan 457 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  E. r  e.  R  r  C_  u )
30 id 20 . . . . . . . . . . . . . . . . . . 19  |-  ( r 
C_  u  ->  r  C_  u )
3130ssbrd 4213 . . . . . . . . . . . . . . . . . 18  |-  ( r 
C_  u  ->  (
x r y  ->  x u y ) )
32 imim1 72 . . . . . . . . . . . . . . . . . 18  |-  ( ( x r y  ->  x u y )  ->  ( ( x u y  ->  ( F `  x )
s ( F `  y ) )  -> 
( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
3331, 32syl 16 . . . . . . . . . . . . . . . . 17  |-  ( r 
C_  u  ->  (
( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
3433adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  R )  /\  r  C_  u )  ->  (
( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
3534ralrimivw 2750 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  R )  /\  r  C_  u )  ->  A. y  e.  X  ( (
x u y  -> 
( F `  x
) s ( F `
 y ) )  ->  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
3635ralrimivw 2750 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  R )  /\  r  C_  u )  ->  A. x  e.  X  A. y  e.  X  ( (
x u y  -> 
( F `  x
) s ( F `
 y ) )  ->  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
37 ralim 2737 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  X  (
( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )  ->  ( A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) )  ->  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
3837ralimi 2741 . . . . . . . . . . . . . 14  |-  ( A. x  e.  X  A. y  e.  X  (
( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )  ->  A. x  e.  X  ( A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
39 ralim 2737 . . . . . . . . . . . . . 14  |-  ( A. x  e.  X  ( A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
4036, 38, 393syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  R )  /\  r  C_  u )  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
4140ex 424 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  R )  ->  (
r  C_  u  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) ) )
4241reximdva 2778 . . . . . . . . . . 11  |-  ( ph  ->  ( E. r  e.  R  r  C_  u  ->  E. r  e.  R  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) ) )
4342adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  ( E. r  e.  R  r  C_  u  ->  E. r  e.  R  ( A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) )  ->  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) ) )
4429, 43mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  U )  ->  E. r  e.  R  ( A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) )  ->  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
45 r19.37av 2818 . . . . . . . . 9  |-  ( E. r  e.  R  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) )  ->  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
4644, 45syl 16 . . . . . . . 8  |-  ( (
ph  /\  u  e.  U )  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
4746rexlimdva 2790 . . . . . . 7  |-  ( ph  ->  ( E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
4847ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  /\  s  e.  S )  ->  ( E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
4920, 48mpd 15 . . . . 5  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  /\  s  e.  S )  ->  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )
5049ralrimiva 2749 . . . 4  |-  ( ( ( ph  /\  F : X --> Y )  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) )  ->  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) )
51 ssfg 17857 . . . . . . . . . . 11  |-  ( R  e.  ( fBas `  ( X  X.  X ) )  ->  R  C_  (
( X  X.  X
) filGen R ) )
5224, 51syl 16 . . . . . . . . . 10  |-  ( ph  ->  R  C_  ( ( X  X.  X ) filGen R ) )
5352, 22syl6sseqr 3355 . . . . . . . . 9  |-  ( ph  ->  R  C_  U )
54 ssrexv 3368 . . . . . . . . . 10  |-  ( R 
C_  U  ->  ( E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x )
s ( F `  y ) ) ) )
55 breq 4174 . . . . . . . . . . . . 13  |-  ( r  =  u  ->  (
x r y  <->  x u
y ) )
5655imbi1d 309 . . . . . . . . . . . 12  |-  ( r  =  u  ->  (
( x r y  ->  ( F `  x ) s ( F `  y ) )  <->  ( x u y  ->  ( F `  x ) s ( F `  y ) ) ) )
57562ralbidv 2708 . . . . . . . . . . 11  |-  ( r  =  u  ->  ( A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  <->  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) ) )
5857cbvrexv 2893 . . . . . . . . . 10  |-  ( E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) s ( F `
 y ) )  <->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )
5954, 58syl6ib 218 . . . . . . . . 9  |-  ( R 
C_  U  ->  ( E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
6053, 59syl 16 . . . . . . . 8  |-  ( ph  ->  ( E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
6160ralimdv 2745 . . . . . . 7  |-  ( ph  ->  ( A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
6261adantr 452 . . . . . 6  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
63 nfv 1626 . . . . . . . . . . 11  |-  F/ s ( ph  /\  F : X --> Y )
64 nfra1 2716 . . . . . . . . . . 11  |-  F/ s A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )
6563, 64nfan 1842 . . . . . . . . . 10  |-  F/ s ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )
66 nfv 1626 . . . . . . . . . 10  |-  F/ s  v  e.  V
6765, 66nfan 1842 . . . . . . . . 9  |-  F/ s ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )
68 simp-4r 744 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) )
69 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  s  e.  S )
70 rsp 2726 . . . . . . . . . . . 12  |-  ( A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) )  ->  ( s  e.  S  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) ) )
7170imp 419 . . . . . . . . . . 11  |-  ( ( A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  /\  s  e.  S )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) )
7268, 69, 71syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
s ( F `  y ) ) )
73 simp-4l 743 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  ( ph  /\  F : X --> Y ) )
74 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  s  C_  v )
75 id 20 . . . . . . . . . . . . . . . . 17  |-  ( s 
C_  v  ->  s  C_  v )
7675ssbrd 4213 . . . . . . . . . . . . . . . 16  |-  ( s 
C_  v  ->  (
( F `  x
) s ( F `
 y )  -> 
( F `  x
) v ( F `
 y ) ) )
7776adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  s  e.  S
)  /\  s  C_  v )  ->  (
( F `  x
) s ( F `
 y )  -> 
( F `  x
) v ( F `
 y ) ) )
7877imim2d 50 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  s  e.  S
)  /\  s  C_  v )  ->  (
( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
7978ralimdv 2745 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  s  e.  S
)  /\  s  C_  v )  ->  ( A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
8079ralimdv 2745 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  s  e.  S
)  /\  s  C_  v )  ->  ( A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
8180reximdv 2777 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  s  e.  S
)  /\  s  C_  v )  ->  ( E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
8273, 69, 74, 81syl21anc 1183 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  ( E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
8372, 82mpd 15 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  F : X
--> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  /\  v  e.  V )  /\  s  e.  S )  /\  s  C_  v )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )
845ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )  ->  S  e.  ( fBas `  ( Y  X.  Y ) ) )
85 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )  ->  v  e.  V )
8685, 8syl6eleq 2494 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )  ->  v  e.  ( ( Y  X.  Y ) filGen S ) )
87 elfg 17856 . . . . . . . . . . . 12  |-  ( S  e.  ( fBas `  ( Y  X.  Y ) )  ->  ( v  e.  ( ( Y  X.  Y ) filGen S )  <-> 
( v  C_  ( Y  X.  Y )  /\  E. s  e.  S  s 
C_  v ) ) )
8887biimpa 471 . . . . . . . . . . 11  |-  ( ( S  e.  ( fBas `  ( Y  X.  Y
) )  /\  v  e.  ( ( Y  X.  Y ) filGen S ) )  ->  ( v  C_  ( Y  X.  Y
)  /\  E. s  e.  S  s  C_  v ) )
8988simprd 450 . . . . . . . . . 10  |-  ( ( S  e.  ( fBas `  ( Y  X.  Y
) )  /\  v  e.  ( ( Y  X.  Y ) filGen S ) )  ->  E. s  e.  S  s  C_  v )
9084, 86, 89syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )  ->  E. s  e.  S  s  C_  v )
9167, 83, 90r19.29af 2809 . . . . . . . 8  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) ) )  /\  v  e.  V )  ->  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )
9291ralrimiva 2749 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) s ( F `
 y ) ) )  ->  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )
9392ex 424 . . . . . 6  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. s  e.  S  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) s ( F `  y ) )  ->  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
9462, 93syld 42 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) )  ->  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) ) )
9594imp 419 . . . 4  |-  ( ( ( ph  /\  F : X --> Y )  /\  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) s ( F `
 y ) ) )  ->  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )
9650, 95impbida 806 . . 3  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) )
9796pm5.32da 623 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. v  e.  V  E. u  e.  U  A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x )
v ( F `  y ) ) )  <-> 
( F : X --> Y  /\  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) s ( F `  y ) ) ) ) )
984, 97bitrd 245 1  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. s  e.  S  E. r  e.  R  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) s ( F `
 y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040   fBascfbas 16644   filGencfg 16645  UnifOncust 18182   Cnucucn 18258
This theorem is referenced by:  metucnOLD  18571  metucn  18572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-fbas 16654  df-fg 16655  df-ust 18183  df-ucn 18259
  Copyright terms: Public domain W3C validator