MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrg Structured version   Unicode version

Theorem istrg 20534
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
istrg  |-  ( R  e.  TopRing 
<->  ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd ) )

Proof of Theorem istrg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elin 3692 . . 3  |-  ( R  e.  ( TopGrp  i^i  Ring ) 
<->  ( R  e.  TopGrp  /\  R  e.  Ring )
)
21anbi1i 695 . 2  |-  ( ( R  e.  ( TopGrp  i^i 
Ring )  /\  M  e. TopMnd )  <->  ( ( R  e.  TopGrp  /\  R  e.  Ring )  /\  M  e. TopMnd
) )
3 fveq2 5872 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
4 istrg.1 . . . . 5  |-  M  =  (mulGrp `  R )
53, 4syl6eqr 2526 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  M )
65eleq1d 2536 . . 3  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. TopMnd  <-> 
M  e. TopMnd ) )
7 df-trg 20530 . . 3  |-  TopRing  =  {
r  e.  ( TopGrp  i^i 
Ring )  |  (mulGrp `  r )  e. TopMnd }
86, 7elrab2 3268 . 2  |-  ( R  e.  TopRing 
<->  ( R  e.  (
TopGrp  i^i  Ring )  /\  M  e. TopMnd ) )
9 df-3an 975 . 2  |-  ( ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd )  <-> 
( ( R  e. 
TopGrp  /\  R  e.  Ring )  /\  M  e. TopMnd )
)
102, 8, 93bitr4i 277 1  |-  ( R  e.  TopRing 
<->  ( R  e.  TopGrp  /\  R  e.  Ring  /\  M  e. TopMnd ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3480   ` cfv 5594  mulGrpcmgp 17013   Ringcrg 17070  TopMndctmd 20437   TopGrpctgp 20438   TopRingctrg 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-iota 5557  df-fv 5602  df-trg 20530
This theorem is referenced by:  trgtmd  20535  trgtgp  20538  trgring  20541  nrgtrg  21066
  Copyright terms: Public domain W3C validator