MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istpsOLD Structured version   Unicode version

Theorem istpsOLD 18523
Description: Express the predicate "is a topological space." (Contributed by NM, 18-Jul-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
istpsOLD  |-  ( <. A ,  J >.  e. 
TopSpOLD  <->  ( J  e. 
Top  /\  A  =  U. J ) )

Proof of Theorem istpsOLD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpsexOLD 18522 . 2  |-  ( <. A ,  J >.  e. 
TopSpOLD  ->  ( A  e.  _V  /\  J  e. 
_V ) )
2 simpr 461 . . . 4  |-  ( ( J  e.  Top  /\  A  =  U. J )  ->  A  =  U. J )
3 uniexg 6375 . . . . 5  |-  ( J  e.  Top  ->  U. J  e.  _V )
43adantr 465 . . . 4  |-  ( ( J  e.  Top  /\  A  =  U. J )  ->  U. J  e.  _V )
52, 4eqeltrd 2515 . . 3  |-  ( ( J  e.  Top  /\  A  =  U. J )  ->  A  e.  _V )
6 elex 2979 . . . 4  |-  ( J  e.  Top  ->  J  e.  _V )
76adantr 465 . . 3  |-  ( ( J  e.  Top  /\  A  =  U. J )  ->  J  e.  _V )
85, 7jca 532 . 2  |-  ( ( J  e.  Top  /\  A  =  U. J )  ->  ( A  e. 
_V  /\  J  e.  _V ) )
9 df-topspOLD 18502 . . . 4  |-  TopSpOLD  =  { <. x ,  y
>.  |  ( y  e.  Top  /\  x  = 
U. y ) }
109eleq2i 2505 . . 3  |-  ( <. A ,  J >.  e. 
TopSpOLD  <->  <. A ,  J >.  e.  { <. x ,  y >.  |  ( y  e.  Top  /\  x  =  U. y
) } )
11 eqeq1 2447 . . . . 5  |-  ( x  =  A  ->  (
x  =  U. y  <->  A  =  U. y ) )
1211anbi2d 703 . . . 4  |-  ( x  =  A  ->  (
( y  e.  Top  /\  x  =  U. y
)  <->  ( y  e. 
Top  /\  A  =  U. y ) ) )
13 eleq1 2501 . . . . 5  |-  ( y  =  J  ->  (
y  e.  Top  <->  J  e.  Top ) )
14 unieq 4097 . . . . . 6  |-  ( y  =  J  ->  U. y  =  U. J )
1514eqeq2d 2452 . . . . 5  |-  ( y  =  J  ->  ( A  =  U. y  <->  A  =  U. J ) )
1613, 15anbi12d 710 . . . 4  |-  ( y  =  J  ->  (
( y  e.  Top  /\  A  =  U. y
)  <->  ( J  e. 
Top  /\  A  =  U. J ) ) )
1712, 16opelopabg 4605 . . 3  |-  ( ( A  e.  _V  /\  J  e.  _V )  ->  ( <. A ,  J >.  e.  { <. x ,  y >.  |  ( y  e.  Top  /\  x  =  U. y
) }  <->  ( J  e.  Top  /\  A  = 
U. J ) ) )
1810, 17syl5bb 257 . 2  |-  ( ( A  e.  _V  /\  J  e.  _V )  ->  ( <. A ,  J >.  e.  TopSpOLD  <->  ( J  e. 
Top  /\  A  =  U. J ) ) )
191, 8, 18pm5.21nii 353 1  |-  ( <. A ,  J >.  e. 
TopSpOLD  <->  ( J  e. 
Top  /\  A  =  U. J ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2970   <.cop 3881   U.cuni 4089   {copab 4347   Topctop 18496   TopSpOLDctpsOLD 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-xp 4844  df-rel 4845  df-topspOLD 18502
This theorem is referenced by:  istps2OLD  18524  retpsOLD  20341
  Copyright terms: Public domain W3C validator