Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Structured version   Unicode version

Theorem istotbnd3 32061
Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
Distinct variable groups:    v, d, x, M    X, d, v, x

Proof of Theorem istotbnd3
Dummy variables  b 
f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 32059 . 2  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. w  e. 
Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
2 oveq1 6310 . . . . . . . . . . . 12  |-  ( x  =  ( f `  b )  ->  (
x ( ball `  M
) d )  =  ( ( f `  b ) ( ball `  M ) d ) )
32eqeq2d 2437 . . . . . . . . . . 11  |-  ( x  =  ( f `  b )  ->  (
b  =  ( x ( ball `  M
) d )  <->  b  =  ( ( f `  b ) ( ball `  M ) d ) ) )
43ac6sfi 7819 . . . . . . . . . 10  |-  ( ( w  e.  Fin  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  ->  E. f ( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )
54ex 436 . . . . . . . . 9  |-  ( w  e.  Fin  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. f
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) ) ) )
65ad2antlr 732 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. f
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) ) ) )
7 simprrl 773 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f :
w --> X )
8 frn 5750 . . . . . . . . . . . . 13  |-  ( f : w --> X  ->  ran  f  C_  X )
97, 8syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  C_  X )
10 simplr 761 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  w  e.  Fin )
11 ffn 5744 . . . . . . . . . . . . . . 15  |-  ( f : w --> X  -> 
f  Fn  w )
127, 11syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f  Fn  w )
13 dffn4 5814 . . . . . . . . . . . . . 14  |-  ( f  Fn  w  <->  f :
w -onto-> ran  f )
1412, 13sylib 200 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  f :
w -onto-> ran  f )
15 fofi 7864 . . . . . . . . . . . . 13  |-  ( ( w  e.  Fin  /\  f : w -onto-> ran  f
)  ->  ran  f  e. 
Fin )
1610, 14, 15syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  e. 
Fin )
17 elfpw 7880 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P X  i^i  Fin )  <->  ( ran  f  C_  X  /\  ran  f  e.  Fin ) )
189, 16, 17sylanbrc 669 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ran  f  e.  ( ~P X  i^i  Fin ) )
192eleq2d 2493 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( f `  b )  ->  (
v  e.  ( x ( ball `  M
) d )  <->  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
2019rexrn 6037 . . . . . . . . . . . . . . 15  |-  ( f  Fn  w  ->  ( E. x  e.  ran  f  v  e.  (
x ( ball `  M
) d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
2112, 20syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ( E. x  e.  ran  f  v  e.  ( x (
ball `  M )
d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
22 eliun 4302 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ x  e. 
ran  f ( x ( ball `  M
) d )  <->  E. x  e.  ran  f  v  e.  ( x ( ball `  M ) d ) )
23 eliun 4302 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ b  e.  w  ( ( f `
 b ) (
ball `  M )
d )  <->  E. b  e.  w  v  e.  ( ( f `  b ) ( ball `  M ) d ) )
2421, 22, 233bitr4g 292 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  ( v  e.  U_ x  e.  ran  f ( x (
ball `  M )
d )  <->  v  e.  U_ b  e.  w  ( ( f `  b
) ( ball `  M
) d ) ) )
2524eqrdv 2420 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  = 
U_ b  e.  w  ( ( f `  b ) ( ball `  M ) d ) )
26 simprrr 774 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) )
27 iuneq2 4314 . . . . . . . . . . . . 13  |-  ( A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d )  ->  U_ b  e.  w  b  =  U_ b  e.  w  ( ( f `  b
) ( ball `  M
) d ) )
2826, 27syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ b  e.  w  b  =  U_ b  e.  w  (
( f `  b
) ( ball `  M
) d ) )
29 uniiun 4350 . . . . . . . . . . . . 13  |-  U. w  =  U_ b  e.  w  b
30 simprl 763 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U. w  =  X )
3129, 30syl5eqr 2478 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ b  e.  w  b  =  X )
3225, 28, 313eqtr2d 2470 . . . . . . . . . . 11  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X )
33 iuneq1 4311 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U_ x  e.  v 
( x ( ball `  M ) d )  =  U_ x  e. 
ran  f ( x ( ball `  M
) d ) )
3433eqeq1d 2425 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( U_ x  e.  v  ( x ( ball `  M ) d )  =  X  <->  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X ) )
3534rspcev 3183 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P X  i^i  Fin )  /\  U_ x  e. 
ran  f ( x ( ball `  M
) d )  =  X )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
3618, 32, 35syl2anc 666 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  ( U. w  =  X  /\  (
f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
3736expr 619 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  (
( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `  b ) ( ball `  M ) d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
3837exlimdv 1769 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( E. f ( f : w --> X  /\  A. b  e.  w  b  =  ( ( f `
 b ) (
ball `  M )
d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
396, 38syld 46 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  /\  U. w  =  X )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x
( ball `  M )
d )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
4039expimpd 607 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  w  e.  Fin )  ->  (
( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
4140rexlimdva 2918 . . . . 5  |-  ( M  e.  ( Met `  X
)  ->  ( E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
42 elfpw 7880 . . . . . . . . . . 11  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
4342simprbi 466 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
4443ad2antrl 733 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  v  e.  Fin )
45 mptfi 7877 . . . . . . . . 9  |-  ( v  e.  Fin  ->  (
x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin )
46 rnfi 7861 . . . . . . . . 9  |-  ( ( x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin  ->  ran  ( x  e.  v  |->  ( x ( ball `  M ) d ) )  e.  Fin )
4744, 45, 463syl 18 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  e.  Fin )
48 ovex 6331 . . . . . . . . . 10  |-  ( x ( ball `  M
) d )  e. 
_V
4948dfiun3 5106 . . . . . . . . 9  |-  U_ x  e.  v  ( x
( ball `  M )
d )  =  U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )
50 simprr 765 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  U_ x  e.  v  ( x ( ball `  M ) d )  =  X )
5149, 50syl5eqr 2478 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  U. ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  X )
52 eqid 2423 . . . . . . . . . 10  |-  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  ( x  e.  v  |->  ( x (
ball `  M )
d ) )
5352rnmpt 5097 . . . . . . . . 9  |-  ran  (
x  e.  v  |->  ( x ( ball `  M
) d ) )  =  { b  |  E. x  e.  v  b  =  ( x ( ball `  M
) d ) }
5442simplbi 462 . . . . . . . . . . . 12  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
5554ad2antrl 733 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  v  C_  X
)
56 ssrexv 3527 . . . . . . . . . . 11  |-  ( v 
C_  X  ->  ( E. x  e.  v 
b  =  ( x ( ball `  M
) d )  ->  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) )
5755, 56syl 17 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ( E. x  e.  v  b  =  ( x ( ball `  M ) d )  ->  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) )
5857ss2abdv 3535 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  { b  |  E. x  e.  v  b  =  ( x ( ball `  M
) d ) } 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } )
5953, 58syl5eqss 3509 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) ) 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } )
60 unieq 4225 . . . . . . . . . . 11  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  U. w  =  U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) ) )
6160eqeq1d 2425 . . . . . . . . . 10  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( U. w  =  X  <->  U. ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  =  X ) )
62 ssabral 3533 . . . . . . . . . . 11  |-  ( w 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) }  <->  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )
63 sseq1 3486 . . . . . . . . . . 11  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( w  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) }  <->  ran  ( x  e.  v  |->  ( x (
ball `  M )
d ) )  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) } ) )
6462, 63syl5bbr 263 . . . . . . . . . 10  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d )  <->  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )
6561, 64anbi12d 716 . . . . . . . . 9  |-  ( w  =  ran  ( x  e.  v  |->  ( x ( ball `  M
) d ) )  ->  ( ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  <->  ( U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  =  X  /\  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) ) )
6665rspcev 3183 . . . . . . . 8  |-  ( ( ran  ( x  e.  v  |->  ( x (
ball `  M )
d ) )  e. 
Fin  /\  ( U. ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  =  X  /\  ran  ( x  e.  v 
|->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
6747, 51, 59, 66syl12anc 1263 . . . . . . 7  |-  ( ( M  e.  ( Met `  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) d )  =  X ) )  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M
) d ) ) )
6867expr 619 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) d )  =  X  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
6968rexlimdva 2918 . . . . 5  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) d )  =  X  ->  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
7041, 69impbid 194 . . . 4  |-  ( M  e.  ( Met `  X
)  ->  ( E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
7170ralbidv 2865 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( A. d  e.  RR+  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  <->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X ) )
7271pm5.32i 642 . 2  |-  ( ( M  e.  ( Met `  X )  /\  A. d  e.  RR+  E. w  e.  Fin  ( U. w  =  X  /\  A. b  e.  w  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
731, 72bitri 253 1  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438   E.wex 1660    e. wcel 1869   {cab 2408   A.wral 2776   E.wrex 2777    i^i cin 3436    C_ wss 3437   ~Pcpw 3980   U.cuni 4217   U_ciun 4297    |-> cmpt 4480   ran crn 4852    Fn wfn 5594   -->wf 5595   -onto->wfo 5597   ` cfv 5599  (class class class)co 6303   Fincfn 7575   RR+crp 11304   Metcme 18949   ballcbl 18950   TotBndctotbnd 32056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-fin 7579  df-totbnd 32058
This theorem is referenced by:  0totbnd  32063  sstotbnd2  32064  equivtotbnd  32068  totbndbnd  32079  prdstotbnd  32084
  Copyright terms: Public domain W3C validator