Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istopclsd Structured version   Unicode version

Theorem istopclsd 30794
Description: A closure function which satisfies sscls 19683, clsidm 19694, cls0 19707, and clsun 30308 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
istopclsd.b  |-  ( ph  ->  B  e.  V )
istopclsd.f  |-  ( ph  ->  F : ~P B --> ~P B )
istopclsd.e  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
istopclsd.i  |-  ( (
ph  /\  x  C_  B
)  ->  ( F `  ( F `  x
) )  =  ( F `  x ) )
istopclsd.z  |-  ( ph  ->  ( F `  (/) )  =  (/) )
istopclsd.u  |-  ( (
ph  /\  x  C_  B  /\  y  C_  B )  ->  ( F `  ( x  u.  y
) )  =  ( ( F `  x
)  u.  ( F `
 y ) ) )
istopclsd.j  |-  J  =  { z  e.  ~P B  |  ( F `  ( B  \  z
) )  =  ( B  \  z ) }
Assertion
Ref Expression
istopclsd  |-  ( ph  ->  ( J  e.  (TopOn `  B )  /\  ( cls `  J )  =  F ) )
Distinct variable groups:    x, B, y, z    ph, x, y, z    x, F, y, z    x, J, y   
x, V, y, z
Allowed substitution hint:    J( z)

Proof of Theorem istopclsd
StepHypRef Expression
1 istopclsd.j . . . 4  |-  J  =  { z  e.  ~P B  |  ( F `  ( B  \  z
) )  =  ( B  \  z ) }
2 istopclsd.f . . . . . . . . 9  |-  ( ph  ->  F : ~P B --> ~P B )
3 ffn 5737 . . . . . . . . 9  |-  ( F : ~P B --> ~P B  ->  F  Fn  ~P B
)
42, 3syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  ~P B
)
54adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ~P B )  ->  F  Fn  ~P B )
6 difss 3627 . . . . . . . . 9  |-  ( B 
\  z )  C_  B
7 istopclsd.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  V )
8 elpw2g 4619 . . . . . . . . . 10  |-  ( B  e.  V  ->  (
( B  \  z
)  e.  ~P B  <->  ( B  \  z ) 
C_  B ) )
97, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( B  \ 
z )  e.  ~P B 
<->  ( B  \  z
)  C_  B )
)
106, 9mpbiri 233 . . . . . . . 8  |-  ( ph  ->  ( B  \  z
)  e.  ~P B
)
1110adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ~P B )  ->  ( B  \  z )  e. 
~P B )
12 fnelfp 6100 . . . . . . 7  |-  ( ( F  Fn  ~P B  /\  ( B  \  z
)  e.  ~P B
)  ->  ( ( B  \  z )  e. 
dom  ( F  i^i  _I  )  <->  ( F `  ( B  \  z
) )  =  ( B  \  z ) ) )
135, 11, 12syl2anc 661 . . . . . 6  |-  ( (
ph  /\  z  e.  ~P B )  ->  (
( B  \  z
)  e.  dom  ( F  i^i  _I  )  <->  ( F `  ( B  \  z
) )  =  ( B  \  z ) ) )
1413bicomd 201 . . . . 5  |-  ( (
ph  /\  z  e.  ~P B )  ->  (
( F `  ( B  \  z ) )  =  ( B  \ 
z )  <->  ( B  \  z )  e.  dom  ( F  i^i  _I  )
) )
1514rabbidva 3100 . . . 4  |-  ( ph  ->  { z  e.  ~P B  |  ( F `  ( B  \  z
) )  =  ( B  \  z ) }  =  { z  e.  ~P B  | 
( B  \  z
)  e.  dom  ( F  i^i  _I  ) } )
161, 15syl5eq 2510 . . 3  |-  ( ph  ->  J  =  { z  e.  ~P B  | 
( B  \  z
)  e.  dom  ( F  i^i  _I  ) } )
17 istopclsd.e . . . . . 6  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
18 simp1 996 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ph )
19 simp2 997 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  x  C_  B
)
20 simp3 998 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  y  C_  x
)
2120, 19sstrd 3509 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  y  C_  B
)
22 istopclsd.u . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B  /\  y  C_  B )  ->  ( F `  ( x  u.  y
) )  =  ( ( F `  x
)  u.  ( F `
 y ) ) )
2318, 19, 21, 22syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  ( x  u.  y
) )  =  ( ( F `  x
)  u.  ( F `
 y ) ) )
24 ssequn2 3673 . . . . . . . . . . 11  |-  ( y 
C_  x  <->  ( x  u.  y )  =  x )
2524biimpi 194 . . . . . . . . . 10  |-  ( y 
C_  x  ->  (
x  u.  y )  =  x )
26253ad2ant3 1019 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( x  u.  y )  =  x )
2726fveq2d 5876 . . . . . . . 8  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  ( x  u.  y
) )  =  ( F `  x ) )
2823, 27eqtr3d 2500 . . . . . . 7  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( ( F `
 x )  u.  ( F `  y
) )  =  ( F `  x ) )
29 ssequn2 3673 . . . . . . 7  |-  ( ( F `  y ) 
C_  ( F `  x )  <->  ( ( F `  x )  u.  ( F `  y
) )  =  ( F `  x ) )
3028, 29sylibr 212 . . . . . 6  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)
31 istopclsd.i . . . . . 6  |-  ( (
ph  /\  x  C_  B
)  ->  ( F `  ( F `  x
) )  =  ( F `  x ) )
327, 2, 17, 30, 31ismrcd1 30792 . . . . 5  |-  ( ph  ->  dom  ( F  i^i  _I  )  e.  (Moore `  B ) )
33 istopclsd.z . . . . . 6  |-  ( ph  ->  ( F `  (/) )  =  (/) )
34 0elpw 4625 . . . . . . 7  |-  (/)  e.  ~P B
35 fnelfp 6100 . . . . . . 7  |-  ( ( F  Fn  ~P B  /\  (/)  e.  ~P B
)  ->  ( (/)  e.  dom  ( F  i^i  _I  )  <->  ( F `  (/) )  =  (/) ) )
364, 34, 35sylancl 662 . . . . . 6  |-  ( ph  ->  ( (/)  e.  dom  ( F  i^i  _I  )  <->  ( F `  (/) )  =  (/) ) )
3733, 36mpbird 232 . . . . 5  |-  ( ph  -> 
(/)  e.  dom  ( F  i^i  _I  ) )
38 simp1 996 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ph )
39 inss1 3714 . . . . . . . . . . . . 13  |-  ( F  i^i  _I  )  C_  F
40 dmss 5212 . . . . . . . . . . . . 13  |-  ( ( F  i^i  _I  )  C_  F  ->  dom  ( F  i^i  _I  )  C_  dom  F )
4139, 40ax-mp 5 . . . . . . . . . . . 12  |-  dom  ( F  i^i  _I  )  C_  dom  F
42 fdm 5741 . . . . . . . . . . . . 13  |-  ( F : ~P B --> ~P B  ->  dom  F  =  ~P B )
432, 42syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  ~P B )
4441, 43syl5sseq 3547 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( F  i^i  _I  )  C_  ~P B
)
45443ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  dom  ( F  i^i  _I  )  C_  ~P B )
46 simp2 997 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  x  e.  dom  ( F  i^i  _I  ) )
4745, 46sseldd 3500 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  x  e.  ~P B )
4847elpwid 4025 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  x  C_  B
)
49 simp3 998 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  y  e.  dom  ( F  i^i  _I  ) )
5045, 49sseldd 3500 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  y  e.  ~P B )
5150elpwid 4025 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  y  C_  B )
5238, 48, 51, 22syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( F `  ( x  u.  y
) )  =  ( ( F `  x
)  u.  ( F `
 y ) ) )
5343ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  F  Fn  ~P B )
54 fnelfp 6100 . . . . . . . . . 10  |-  ( ( F  Fn  ~P B  /\  x  e.  ~P B )  ->  (
x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
5553, 47, 54syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
5646, 55mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( F `  x )  =  x )
57 fnelfp 6100 . . . . . . . . . 10  |-  ( ( F  Fn  ~P B  /\  y  e.  ~P B )  ->  (
y  e.  dom  ( F  i^i  _I  )  <->  ( F `  y )  =  y ) )
5853, 50, 57syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( y  e.  dom  ( F  i^i  _I  )  <->  ( F `  y )  =  y ) )
5949, 58mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( F `  y )  =  y )
6056, 59uneq12d 3655 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( ( F `  x )  u.  ( F `  y
) )  =  ( x  u.  y ) )
6152, 60eqtrd 2498 . . . . . 6  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( F `  ( x  u.  y
) )  =  ( x  u.  y ) )
6248, 51unssd 3676 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( x  u.  y )  C_  B
)
63 vex 3112 . . . . . . . . . 10  |-  x  e. 
_V
64 vex 3112 . . . . . . . . . 10  |-  y  e. 
_V
6563, 64unex 6597 . . . . . . . . 9  |-  ( x  u.  y )  e. 
_V
6665elpw 4021 . . . . . . . 8  |-  ( ( x  u.  y )  e.  ~P B  <->  ( x  u.  y )  C_  B
)
6762, 66sylibr 212 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( x  u.  y )  e.  ~P B )
68 fnelfp 6100 . . . . . . 7  |-  ( ( F  Fn  ~P B  /\  ( x  u.  y
)  e.  ~P B
)  ->  ( (
x  u.  y )  e.  dom  ( F  i^i  _I  )  <->  ( F `  ( x  u.  y
) )  =  ( x  u.  y ) ) )
6953, 67, 68syl2anc 661 . . . . . 6  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( (
x  u.  y )  e.  dom  ( F  i^i  _I  )  <->  ( F `  ( x  u.  y
) )  =  ( x  u.  y ) ) )
7061, 69mpbird 232 . . . . 5  |-  ( (
ph  /\  x  e.  dom  ( F  i^i  _I  )  /\  y  e.  dom  ( F  i^i  _I  )
)  ->  ( x  u.  y )  e.  dom  ( F  i^i  _I  )
)
71 eqid 2457 . . . . 5  |-  { z  e.  ~P B  | 
( B  \  z
)  e.  dom  ( F  i^i  _I  ) }  =  { z  e. 
~P B  |  ( B  \  z )  e.  dom  ( F  i^i  _I  ) }
7232, 37, 70, 71mretopd 19719 . . . 4  |-  ( ph  ->  ( { z  e. 
~P B  |  ( B  \  z )  e.  dom  ( F  i^i  _I  ) }  e.  (TopOn `  B
)  /\  dom  ( F  i^i  _I  )  =  ( Clsd `  {
z  e.  ~P B  |  ( B  \ 
z )  e.  dom  ( F  i^i  _I  ) } ) ) )
7372simpld 459 . . 3  |-  ( ph  ->  { z  e.  ~P B  |  ( B  \  z )  e.  dom  ( F  i^i  _I  ) }  e.  (TopOn `  B
) )
7416, 73eqeltrd 2545 . 2  |-  ( ph  ->  J  e.  (TopOn `  B ) )
75 topontop 19553 . . . . . 6  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
7674, 75syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
77 eqid 2457 . . . . . 6  |-  (mrCls `  ( Clsd `  J )
)  =  (mrCls `  ( Clsd `  J )
)
7877mrccls 19706 . . . . 5  |-  ( J  e.  Top  ->  ( cls `  J )  =  (mrCls `  ( Clsd `  J ) ) )
7976, 78syl 16 . . . 4  |-  ( ph  ->  ( cls `  J
)  =  (mrCls `  ( Clsd `  J )
) )
8072simprd 463 . . . . . 6  |-  ( ph  ->  dom  ( F  i^i  _I  )  =  ( Clsd `  { z  e.  ~P B  |  ( B  \  z )  e.  dom  ( F  i^i  _I  ) } ) )
8116fveq2d 5876 . . . . . 6  |-  ( ph  ->  ( Clsd `  J
)  =  ( Clsd `  { z  e.  ~P B  |  ( B  \  z )  e.  dom  ( F  i^i  _I  ) } ) )
8280, 81eqtr4d 2501 . . . . 5  |-  ( ph  ->  dom  ( F  i^i  _I  )  =  ( Clsd `  J ) )
8382fveq2d 5876 . . . 4  |-  ( ph  ->  (mrCls `  dom  ( F  i^i  _I  ) )  =  (mrCls `  ( Clsd `  J ) ) )
8479, 83eqtr4d 2501 . . 3  |-  ( ph  ->  ( cls `  J
)  =  (mrCls `  dom  ( F  i^i  _I  ) ) )
857, 2, 17, 30, 31ismrcd2 30793 . . 3  |-  ( ph  ->  F  =  (mrCls `  dom  ( F  i^i  _I  ) ) )
8684, 85eqtr4d 2501 . 2  |-  ( ph  ->  ( cls `  J
)  =  F )
8774, 86jca 532 1  |-  ( ph  ->  ( J  e.  (TopOn `  B )  /\  ( cls `  J )  =  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {crab 2811    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015    _I cid 4799   dom cdm 5008    Fn wfn 5589   -->wf 5590   ` cfv 5594  mrClscmrc 14999   Topctop 19520  TopOnctopon 19521   Clsdccld 19643   clsccl 19645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-mre 15002  df-mrc 15003  df-top 19525  df-topon 19528  df-cld 19646  df-cls 19648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator