MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istop2g Structured version   Visualization version   Unicode version

Theorem istop2g 20003
Description: Express the predicate " J is a topology," using "the intersection of the elements of any finite subcollection" instead of the intersection of any two elements. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
istop2g  |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) ) )
Distinct variable groups:    x, J    x, A

Proof of Theorem istop2g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 istopg 20002 . 2  |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
2 fiint 7866 . . 3  |-  ( A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J  <->  A. x ( ( x  C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  J ) )
32anbi2i 708 . 2  |-  ( ( A. x ( x 
C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J )  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
41, 3syl6bb 269 1  |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    e. wcel 1904    =/= wne 2641   A.wral 2756    i^i cin 3389    C_ wss 3390   (/)c0 3722   U.cuni 4190   |^|cint 4226   Fincfn 7587   Topctop 19994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-fin 7591  df-top 19998
This theorem is referenced by:  fiinopn  20008
  Copyright terms: Public domain W3C validator