MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Unicode version

Theorem istmd 20441
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1  |-  F  =  ( +f `  G )
istmd.2  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
istmd  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )

Proof of Theorem istmd
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3692 . . 3  |-  ( G  e.  ( Mnd  i^i  TopSp
)  <->  ( G  e. 
Mnd  /\  G  e.  TopSp
) )
21anbi1i 695 . 2  |-  ( ( G  e.  ( Mnd 
i^i  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) )  <->  ( ( G  e.  Mnd  /\  G  e.  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
3 fvex 5882 . . . . 5  |-  ( TopOpen `  f )  e.  _V
43a1i 11 . . . 4  |-  ( f  =  G  ->  ( TopOpen
`  f )  e. 
_V )
5 simpl 457 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
f  =  G )
65fveq2d 5876 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( +f `  f )  =  ( +f `  G
) )
7 istmd.1 . . . . . 6  |-  F  =  ( +f `  G )
86, 7syl6eqr 2526 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( +f `  f )  =  F )
9 id 22 . . . . . . . 8  |-  ( j  =  ( TopOpen `  f
)  ->  j  =  ( TopOpen `  f )
)
10 fveq2 5872 . . . . . . . . 9  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  ( TopOpen `  G )
)
11 istmd.2 . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
1210, 11syl6eqr 2526 . . . . . . . 8  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  J )
139, 12sylan9eqr 2530 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
j  =  J )
1413, 13oveq12d 6313 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( j  tX  j
)  =  ( J 
tX  J ) )
1514, 13oveq12d 6313 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( j  tX  j )  Cn  j
)  =  ( ( J  tX  J )  Cn  J ) )
168, 15eleq12d 2549 . . . 4  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( +f `  f )  e.  ( ( j  tX  j
)  Cn  j )  <-> 
F  e.  ( ( J  tX  J )  Cn  J ) ) )
174, 16sbcied 3373 . . 3  |-  ( f  =  G  ->  ( [. ( TopOpen `  f )  /  j ]. ( +f `  f
)  e.  ( ( j  tX  j )  Cn  j )  <->  F  e.  ( ( J  tX  J )  Cn  J
) ) )
18 df-tmd 20439 . . 3  |- TopMnd  =  {
f  e.  ( Mnd 
i^i  TopSp )  |  [. ( TopOpen `  f )  /  j ]. ( +f `  f
)  e.  ( ( j  tX  j )  Cn  j ) }
1917, 18elrab2 3268 . 2  |-  ( G  e. TopMnd 
<->  ( G  e.  ( Mnd  i^i  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J ) ) )
20 df-3an 975 . 2  |-  ( ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) )  <->  ( ( G  e.  Mnd  /\  G  e.  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
212, 19, 203bitr4i 277 1  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118   [.wsbc 3336    i^i cin 3480   ` cfv 5594  (class class class)co 6295   TopOpenctopn 14694   +fcplusf 15743   Mndcmnd 15793   TopSpctps 19266    Cn ccn 19593    tX ctx 19929  TopMndctmd 20437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-iota 5557  df-fv 5602  df-ov 6298  df-tmd 20439
This theorem is referenced by:  tmdmnd  20442  tmdtps  20443  tmdcn  20450  istgp2  20458  oppgtmd  20464  symgtgp  20468  submtmd  20471  prdstmdd  20490  nrgtrg  21066  mhmhmeotmd  27734  xrge0tmdOLD  27752
  Copyright terms: Public domain W3C validator