Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Structured version   Unicode version

Theorem istendo 35912
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l  |-  .<_  =  ( le `  K )
tendoset.h  |-  H  =  ( LHyp `  K
)
tendoset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoset.r  |-  R  =  ( ( trL `  K
) `  W )
tendoset.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
istendo  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
Distinct variable groups:    f, g, K    T, f, g    f, W, g    S, f, g
Allowed substitution hints:    R( f, g)    E( f, g)    H( f, g)    .<_ ( f, g)    V( f, g)

Proof of Theorem istendo
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4  |-  .<_  =  ( le `  K )
2 tendoset.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendoset.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
5 tendoset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
61, 2, 3, 4, 5tendoset 35911 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  E  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
76eleq2d 2537 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  S  e.  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } ) )
8 fvex 5882 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  e.  _V
93, 8eqeltri 2551 . . . . 5  |-  T  e. 
_V
10 fex 6144 . . . . 5  |-  ( ( S : T --> T  /\  T  e.  _V )  ->  S  e.  _V )
119, 10mpan2 671 . . . 4  |-  ( S : T --> T  ->  S  e.  _V )
12113ad2ant1 1017 . . 3  |-  ( ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) )  ->  S  e.  _V )
13 feq1 5719 . . . 4  |-  ( s  =  S  ->  (
s : T --> T  <->  S : T
--> T ) )
14 fveq1 5871 . . . . . 6  |-  ( s  =  S  ->  (
s `  ( f  o.  g ) )  =  ( S `  (
f  o.  g ) ) )
15 fveq1 5871 . . . . . . 7  |-  ( s  =  S  ->  (
s `  f )  =  ( S `  f ) )
16 fveq1 5871 . . . . . . 7  |-  ( s  =  S  ->  (
s `  g )  =  ( S `  g ) )
1715, 16coeq12d 5173 . . . . . 6  |-  ( s  =  S  ->  (
( s `  f
)  o.  ( s `
 g ) )  =  ( ( S `
 f )  o.  ( S `  g
) ) )
1814, 17eqeq12d 2489 . . . . 5  |-  ( s  =  S  ->  (
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  <->  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) ) )
19182ralbidv 2911 . . . 4  |-  ( s  =  S  ->  ( A. f  e.  T  A. g  e.  T  ( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  <->  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) ) )
2015fveq2d 5876 . . . . . 6  |-  ( s  =  S  ->  ( R `  ( s `  f ) )  =  ( R `  ( S `  f )
) )
2120breq1d 4463 . . . . 5  |-  ( s  =  S  ->  (
( R `  (
s `  f )
)  .<_  ( R `  f )  <->  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) )
2221ralbidv 2906 . . . 4  |-  ( s  =  S  ->  ( A. f  e.  T  ( R `  ( s `
 f ) ) 
.<_  ( R `  f
)  <->  A. f  e.  T  ( R `  ( S `
 f ) ) 
.<_  ( R `  f
) ) )
2313, 19, 223anbi123d 1299 . . 3  |-  ( s  =  S  ->  (
( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) )  <-> 
( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) )  /\  A. f  e.  T  ( R `  ( S `  f ) )  .<_  ( R `  f ) ) ) )
2412, 23elab3 3262 . 2  |-  ( S  e.  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) }  <->  ( S : T
--> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) )  /\  A. f  e.  T  ( R `  ( S `  f ) )  .<_  ( R `  f ) ) )
257, 24syl6bb 261 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2817   _Vcvv 3118   class class class wbr 4453    o. ccom 5009   -->wf 5590   ` cfv 5594   lecple 14579   LHypclh 35136   LTrncltrn 35253   trLctrl 35310   TEndoctendo 35904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-tendo 35907
This theorem is referenced by:  tendotp  35913  istendod  35914  tendof  35915  tendovalco  35917
  Copyright terms: Public domain W3C validator