Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Unicode version

Theorem istendo 31242
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l  |-  .<_  =  ( le `  K )
tendoset.h  |-  H  =  ( LHyp `  K
)
tendoset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoset.r  |-  R  =  ( ( trL `  K
) `  W )
tendoset.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
istendo  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
Distinct variable groups:    f, g, K    T, f, g    f, W, g    S, f, g
Allowed substitution hints:    R( f, g)    E( f, g)    H( f, g)    .<_ ( f, g)    V( f, g)

Proof of Theorem istendo
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4  |-  .<_  =  ( le `  K )
2 tendoset.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendoset.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
5 tendoset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
61, 2, 3, 4, 5tendoset 31241 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  E  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
76eleq2d 2471 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  S  e.  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } ) )
8 fvex 5701 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  e.  _V
93, 8eqeltri 2474 . . . . 5  |-  T  e. 
_V
10 fex 5928 . . . . 5  |-  ( ( S : T --> T  /\  T  e.  _V )  ->  S  e.  _V )
119, 10mpan2 653 . . . 4  |-  ( S : T --> T  ->  S  e.  _V )
12113ad2ant1 978 . . 3  |-  ( ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) )  ->  S  e.  _V )
13 feq1 5535 . . . 4  |-  ( s  =  S  ->  (
s : T --> T  <->  S : T
--> T ) )
14 fveq1 5686 . . . . . 6  |-  ( s  =  S  ->  (
s `  ( f  o.  g ) )  =  ( S `  (
f  o.  g ) ) )
15 fveq1 5686 . . . . . . 7  |-  ( s  =  S  ->  (
s `  f )  =  ( S `  f ) )
16 fveq1 5686 . . . . . . 7  |-  ( s  =  S  ->  (
s `  g )  =  ( S `  g ) )
1715, 16coeq12d 4996 . . . . . 6  |-  ( s  =  S  ->  (
( s `  f
)  o.  ( s `
 g ) )  =  ( ( S `
 f )  o.  ( S `  g
) ) )
1814, 17eqeq12d 2418 . . . . 5  |-  ( s  =  S  ->  (
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  <->  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) ) )
19182ralbidv 2708 . . . 4  |-  ( s  =  S  ->  ( A. f  e.  T  A. g  e.  T  ( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  <->  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) ) ) )
2015fveq2d 5691 . . . . . 6  |-  ( s  =  S  ->  ( R `  ( s `  f ) )  =  ( R `  ( S `  f )
) )
2120breq1d 4182 . . . . 5  |-  ( s  =  S  ->  (
( R `  (
s `  f )
)  .<_  ( R `  f )  <->  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) )
2221ralbidv 2686 . . . 4  |-  ( s  =  S  ->  ( A. f  e.  T  ( R `  ( s `
 f ) ) 
.<_  ( R `  f
)  <->  A. f  e.  T  ( R `  ( S `
 f ) ) 
.<_  ( R `  f
) ) )
2313, 19, 223anbi123d 1254 . . 3  |-  ( s  =  S  ->  (
( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) )  <-> 
( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) )  /\  A. f  e.  T  ( R `  ( S `  f ) )  .<_  ( R `  f ) ) ) )
2412, 23elab3 3049 . 2  |-  ( S  e.  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) }  <->  ( S : T
--> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) )  /\  A. f  e.  T  ( R `  ( S `  f ) )  .<_  ( R `  f ) ) )
257, 24syl6bb 253 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   _Vcvv 2916   class class class wbr 4172    o. ccom 4841   -->wf 5409   ` cfv 5413   lecple 13491   LHypclh 30466   LTrncltrn 30583   trLctrl 30640   TEndoctendo 31234
This theorem is referenced by:  tendotp  31243  istendod  31244  tendof  31245  tendovalco  31247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-tendo 31237
  Copyright terms: Public domain W3C validator